pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical p...pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.展开更多
[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hyd...[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hydrophobicity, secondary structure of ZnT from Baoding alfalfa were predicted by a series of bioinformatics software. And the transmembrane domains were predicted by using different online tools. [Result] ZnT is a hydrophobic protein containing 408 amino acids with the theoretical pl of 5.94, and it has 7 potential transmembrane hydrophobic regions. In the sec- ondary structure, co-helix (Hh) accounted for 48.04%, extended strand (Ee) for 9.56%, random coil (Cc) for 42.40%, which was accored with the characteristic of transmembrane protein. [Conclusion] mZnT is a member of CDF family, responsible for transporting Zn^2+ out of the cell membrane to reduce the concentration and toxicity of Zn^2+.展开更多
文摘pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.
基金Supported by the General Project of Qujing Normal University(2010MS007)~~
文摘[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hydrophobicity, secondary structure of ZnT from Baoding alfalfa were predicted by a series of bioinformatics software. And the transmembrane domains were predicted by using different online tools. [Result] ZnT is a hydrophobic protein containing 408 amino acids with the theoretical pl of 5.94, and it has 7 potential transmembrane hydrophobic regions. In the sec- ondary structure, co-helix (Hh) accounted for 48.04%, extended strand (Ee) for 9.56%, random coil (Cc) for 42.40%, which was accored with the characteristic of transmembrane protein. [Conclusion] mZnT is a member of CDF family, responsible for transporting Zn^2+ out of the cell membrane to reduce the concentration and toxicity of Zn^2+.