The purpose of the present studies was analysis of the age induced changes in photochemical efficiency and xanthophyils cycle pigments of the primary cabbage (Brassica oleracea L. cv. Capitata f. alba) leaves. Photo...The purpose of the present studies was analysis of the age induced changes in photochemical efficiency and xanthophyils cycle pigments of the primary cabbage (Brassica oleracea L. cv. Capitata f. alba) leaves. Photochemical efficiency of photosystem Ⅱ (PS Ⅱ) was studied by a pulse amplitude modulated chlorophyll fluorescence apparatus, chlorophyll concentration was analysis spectrophotometrically and xanthophyll cycle pigments were estimated by high-pressure liquid chromatography (HPLC). Leaf senescence was accompanied with a decrease both in chlorophylls concentration, the photochemical efficiency and rate constant for PS Ⅱ photochemistry whereas non-photochemical parameters increased. Excitation pressure (1-qP) which is a measure of relative lumen acidification increased by 1.2x in aging leaves. The maximum quantum yield of PS Ⅱ showed no significant change. The level of de-epoxidised xanthophylls increased but the concentration of mono- and di-epoxy xanthophylls decreased in aging leaves. A linear relationship between the excitation pressure and the depoxidation state of the xanthophyll cycle pigments and lutein, during the onset of senescence suggests that excitation pressure can be used as a sensor for monitoring the onset of senescence as well for the de-epoxidation state of the xanthophylls responsible for non-photochemical quenching in stressed leaves.展开更多
The practical application of semiconductor-based high-efficiency white-light sources, also known as light-emitting diodes, or LEDs, is a recent development of Japanese engineering. This development could be a game-cha...The practical application of semiconductor-based high-efficiency white-light sources, also known as light-emitting diodes, or LEDs, is a recent development of Japanese engineering. This development could be a game-changer for lighting worldwide, given that current power consumption for lighting accounts for 16% of the total electricity consumption in Japan.展开更多
A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated...A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated. The photoluminescence results show that all samples can be excited efficiently by UV (396 nm) light and blue (466 nm) light and emit red (615 nm) light with line spectra, which are coupled well with the characteristic emission from UV-LED and blue LED, respectively. The experimental results and their analysis suggest that the energy transfer occurs due to dipole-dipole interactions among Eu3+ ions in LiKGd2-xEux(MoO4)4. Compared with Cao.8MoO4: Eu0.2^3-, the emission intensity of LiKGdo.9(MoO4)4: Eu1.1^3- is about 1.4 times higher and the CIE chromaticity coordinates are as close to the National Television System Committee (NTSC) standard values as those of Cao.8MoO4: Eu0.2^3-. The optical properties suggest that LiKGdo.9(MoO4)4: Eu1.1^3- is an efficient red-emitting phosphor for white LEDs applications.展开更多
The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phospho...The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.展开更多
文摘The purpose of the present studies was analysis of the age induced changes in photochemical efficiency and xanthophyils cycle pigments of the primary cabbage (Brassica oleracea L. cv. Capitata f. alba) leaves. Photochemical efficiency of photosystem Ⅱ (PS Ⅱ) was studied by a pulse amplitude modulated chlorophyll fluorescence apparatus, chlorophyll concentration was analysis spectrophotometrically and xanthophyll cycle pigments were estimated by high-pressure liquid chromatography (HPLC). Leaf senescence was accompanied with a decrease both in chlorophylls concentration, the photochemical efficiency and rate constant for PS Ⅱ photochemistry whereas non-photochemical parameters increased. Excitation pressure (1-qP) which is a measure of relative lumen acidification increased by 1.2x in aging leaves. The maximum quantum yield of PS Ⅱ showed no significant change. The level of de-epoxidised xanthophylls increased but the concentration of mono- and di-epoxy xanthophylls decreased in aging leaves. A linear relationship between the excitation pressure and the depoxidation state of the xanthophyll cycle pigments and lutein, during the onset of senescence suggests that excitation pressure can be used as a sensor for monitoring the onset of senescence as well for the de-epoxidation state of the xanthophylls responsible for non-photochemical quenching in stressed leaves.
文摘The practical application of semiconductor-based high-efficiency white-light sources, also known as light-emitting diodes, or LEDs, is a recent development of Japanese engineering. This development could be a game-changer for lighting worldwide, given that current power consumption for lighting accounts for 16% of the total electricity consumption in Japan.
基金supported by the Major Science and Technology Projects of Wuhan City Science and Technology Bureau (Grant No.200810321148)
文摘A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated. The photoluminescence results show that all samples can be excited efficiently by UV (396 nm) light and blue (466 nm) light and emit red (615 nm) light with line spectra, which are coupled well with the characteristic emission from UV-LED and blue LED, respectively. The experimental results and their analysis suggest that the energy transfer occurs due to dipole-dipole interactions among Eu3+ ions in LiKGd2-xEux(MoO4)4. Compared with Cao.8MoO4: Eu0.2^3-, the emission intensity of LiKGdo.9(MoO4)4: Eu1.1^3- is about 1.4 times higher and the CIE chromaticity coordinates are as close to the National Television System Committee (NTSC) standard values as those of Cao.8MoO4: Eu0.2^3-. The optical properties suggest that LiKGdo.9(MoO4)4: Eu1.1^3- is an efficient red-emitting phosphor for white LEDs applications.
基金supported by the Scientific and Technological Project of Chongqing, China (Grant No. CSTC, 2009AB4171)the Innovation Foundation for Technology Based Firms of Ministry of Science and Technology, China (Grant No. 04C26225100807)
文摘The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.