[ Objective] The aim of this study is to obtain transgenic Lilium longiflorum Thumb. [ Method] A two-step method of explant and the T-DNA integration technique were employed to transform Lilium longiflorum via Agrobac...[ Objective] The aim of this study is to obtain transgenic Lilium longiflorum Thumb. [ Method] A two-step method of explant and the T-DNA integration technique were employed to transform Lilium longiflorum via Agrobacterium mediated method. [ Result] The best infection effect appeared under the OD600 value of Agrobacterium within 0.6 -0.8, the addition of 250 mg/L AS could increase the transformation efficiency. The optimal concentration of G418 for screening is 50 mg/L. Some putative transgenic plants of Lilium longiflorum with resistance to G418 showed positive in PCR, preliminarily proving that T-DNA gene had integrated into the genome of lily. [ Conclusion] The study may lay a foundation for breeding excellent lily varieties through TDNA integration technique.展开更多
Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. P...Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. Pollen germination percentage reduced dramatically when nojirimycin was applied in the culture medium. In case that nojirimycin was added at 0 or 1 h after the onset of incubation, the inhibition rate was 99.6% and 91.4%, respectively. When 3 mmol/L of nojirimycin was applied in the liquid medium at 0, 1, 1.5 and 2 h after the onset of incubation, the growth of pollen tubes was interrupted, which resulted in the morphological change of the pollen tubes such as the newly grown portion of pollen tubes being bent, curved and swollen. Tracing the growth pattern of the individual pollen tube grown in semi_solid medium by video microscopy, the authors demonstrated that pollen tube growth rate was strongly inhibited by nojirimycin at concentrations ranged from 0.003 to 3 mmol/L. Moreover, the cytoplasmic arrangement and the morphology of the pollen tubes were also affected by nojirimycin. The growth inhibition brought about by nojirimycin was reversible. These results indicated that β_glucanases, which degrade 1,3_β_glucan and/or 1,4_β_glucan or 1,3:1,4_β_glucan constructed in the cell wall, are involved in pollen germination and pollen tube growth. It provides new insight into an understanding of the contribution of β_glucanases to the cell wall extensibility and the crucial role of cell wall in regards to the regulation of pollen tube growth.展开更多
基金the Fund of Basis Scientific Research Operation of Institute of Tropical Bioscience and Biotechnology,Chinese Academy of Tropical Agricultural Sciencesthe Grant of Scientific Fund of Chinese Academy of Tropical Agricultural Sciences (NoRky0529)~~
文摘[ Objective] The aim of this study is to obtain transgenic Lilium longiflorum Thumb. [ Method] A two-step method of explant and the T-DNA integration technique were employed to transform Lilium longiflorum via Agrobacterium mediated method. [ Result] The best infection effect appeared under the OD600 value of Agrobacterium within 0.6 -0.8, the addition of 250 mg/L AS could increase the transformation efficiency. The optimal concentration of G418 for screening is 50 mg/L. Some putative transgenic plants of Lilium longiflorum with resistance to G418 showed positive in PCR, preliminarily proving that T-DNA gene had integrated into the genome of lily. [ Conclusion] The study may lay a foundation for breeding excellent lily varieties through TDNA integration technique.
文摘Glucanases were found in the cell wall of Lilium longiflorum Thunb. pollen tubes grown in vitro . The activity of β_glucanases was, in a certain extent, decreased by nojirimycin, an inhibitor of glucosidase. Pollen germination percentage reduced dramatically when nojirimycin was applied in the culture medium. In case that nojirimycin was added at 0 or 1 h after the onset of incubation, the inhibition rate was 99.6% and 91.4%, respectively. When 3 mmol/L of nojirimycin was applied in the liquid medium at 0, 1, 1.5 and 2 h after the onset of incubation, the growth of pollen tubes was interrupted, which resulted in the morphological change of the pollen tubes such as the newly grown portion of pollen tubes being bent, curved and swollen. Tracing the growth pattern of the individual pollen tube grown in semi_solid medium by video microscopy, the authors demonstrated that pollen tube growth rate was strongly inhibited by nojirimycin at concentrations ranged from 0.003 to 3 mmol/L. Moreover, the cytoplasmic arrangement and the morphology of the pollen tubes were also affected by nojirimycin. The growth inhibition brought about by nojirimycin was reversible. These results indicated that β_glucanases, which degrade 1,3_β_glucan and/or 1,4_β_glucan or 1,3:1,4_β_glucan constructed in the cell wall, are involved in pollen germination and pollen tube growth. It provides new insight into an understanding of the contribution of β_glucanases to the cell wall extensibility and the crucial role of cell wall in regards to the regulation of pollen tube growth.