Through synthetic researches of multi-index geological records of Niya section, which are of high resolution in southern margin of Tarim Basin, this paper has reconstructed the sequences of paleoclimate in this region...Through synthetic researches of multi-index geological records of Niya section, which are of high resolution in southern margin of Tarim Basin, this paper has reconstructed the sequences of paleoclimate in this region during historical times (since about 4000a B.P.). During the last 4000 years, the area has experienced alternations of relative cold-moisture and relative warm-dry periods. Three evident cold-moisture periods and three warm-dry periods are identifing. The study shows that the human activities have an intimate relation with the evolution of paleoclimate in the southern Xinjiang. Paleoclimate has played very important role in influencing human being′s agricultural activities.展开更多
Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest f...Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.展开更多
The temporal-spatial geographic distribution of archaeological sites and its feature between 10.0-2.8 ka BP (ka BP= thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) were determined, bas...The temporal-spatial geographic distribution of archaeological sites and its feature between 10.0-2.8 ka BP (ka BP= thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) were determined, based on GIS spatial analysis in the Poyang Lake Basin. The relationship between geographic distribution of sites of different periods under subsis- tence existence of ancient civilizations, climate and environmental change was investigated. The results revealed numerous archaeological sites of the Neolithic Age (10.0-3.6 ka BP). The sites were mainly located in the northern part of the Poyang Lake Basin, a hilly and mountainous area with many river terraces suitable for the development of human civilization. The number of archaeological sites rapidly increased during the Shang and Zhou dynasties (3.6-2.8 ka BP) and spread widely on the floodplains of the middle and lower reaches of Ganjiang River and onto the west, south, and southeast beach areas of the Poyang Lake. Holocene records of climate change suggested that it was possible that climate fluctuations had a great impact on human evolution in the study area. Before 3.6 ka BP, westward and northward expansion of Neolithic cultures in the Poyang Lake watershed occurred under the background of climate amelioration (becoming warmer and wetter). The ancient people lived in the hilly areas with high elevation. The simple mode of a fishing and gathering economy was mostly suited to this area in the early Neolithic Age. The scope of human activities was expanded and cultural diversity developed in the late Neolithic Age. However, with population growth and increasing survival pressure in a dry-cold climatic stage after 3.6 ka BP, this sim-pie living mode had to be abandoned, and various forms of economy, the majority being ag- riculture, were developed on flood plains of the lower reaches of numerous rivers around Poyang Lake. This promoted flourishing of the Bronze culture of South China.展开更多
The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change...The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change characteristic in this high-latitude, cold and data-insufficient region is of great importance to maintaining ecological safety and corre- sponding to global climate changes. In this article, the annual average temperature, precipi- tation and sunshine duration series were firstly constructed using tree-ring data and the me- teorological observation data. Then, using the climate tendency rate method, moving-t-testing method, Yamamoto method and wavelet analysis method, we have investigated the climate changes in the region during the past 307 years. Results indicate that, since 1707, the annual average temperature increased significantly, the precipitation increased slightly and the sun- shine duration decreased, with the tendency rates of 0.06~C/10a, 0.79 mm/10a and -5.15 h/10a, respectively (P〈~0.01). Since the 21 st century, the period with the greatest increase of the annual average temperature (also with the greatest increase of precipitation) corresponds to the period with greatest decrease of sunshine duration. Three sudden changes of the an- nual average temperature and sunshine duration occurred in this period while two sudden changes of precipitation occurred. The strong sudden-change years of precipitation and sunshine duration are basically consistent with the sudden-change years of annual average temperature, suggesting that in the mid-1860s, the climatic sudden change or transition really existed in this region. In the time domain, the climatic series of this region exhibit obvious local variation characteristics. The annual average temperature and sunshine duration exhibit the periodic variations of 25 years while the precipitation exhibits a periodic variation of 20 years. Based on these periodic characteristics, one can infer that in the period from 2013 to 2030, the temperature will be at a high-temperature stage, the precipitation will be at an abundant-precipitation stage and the sunshine duration will be at an less-sunshine stage. In terms of spatial distribution, the leading distribution type of the annual average temperature in this region shows integrity, i.e:, it is easily higher or lower in the whole region; and the second distribution type is more (or less) in the southwest parts and less (or more) in the northeast parts. Precipitation and sunshine duration exhibit complex spatial distribution and include four spatial distribution types. The present study can provide scientific basis for the security in- vestigation of homeland, ecological and water resources as well as economic development programming in China's northern borders.展开更多
基金Great Base Project of National Natural Science Foundation of China (No.49761007 and 49861005) International Science Research As
文摘Through synthetic researches of multi-index geological records of Niya section, which are of high resolution in southern margin of Tarim Basin, this paper has reconstructed the sequences of paleoclimate in this region during historical times (since about 4000a B.P.). During the last 4000 years, the area has experienced alternations of relative cold-moisture and relative warm-dry periods. Three evident cold-moisture periods and three warm-dry periods are identifing. The study shows that the human activities have an intimate relation with the evolution of paleoclimate in the southern Xinjiang. Paleoclimate has played very important role in influencing human being′s agricultural activities.
基金National Natural Science Foundation of China (41005051)Applicability of various multi-model ensemble approaches in seasonal precipitation prediction
文摘Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.
基金National Natural Science Foundation of China,No.41371204,No.41571179Major Program of the National Social Science Foundation of China,No.11&ZD183The Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation,No.JXS-EW-00
文摘The temporal-spatial geographic distribution of archaeological sites and its feature between 10.0-2.8 ka BP (ka BP= thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) were determined, based on GIS spatial analysis in the Poyang Lake Basin. The relationship between geographic distribution of sites of different periods under subsis- tence existence of ancient civilizations, climate and environmental change was investigated. The results revealed numerous archaeological sites of the Neolithic Age (10.0-3.6 ka BP). The sites were mainly located in the northern part of the Poyang Lake Basin, a hilly and mountainous area with many river terraces suitable for the development of human civilization. The number of archaeological sites rapidly increased during the Shang and Zhou dynasties (3.6-2.8 ka BP) and spread widely on the floodplains of the middle and lower reaches of Ganjiang River and onto the west, south, and southeast beach areas of the Poyang Lake. Holocene records of climate change suggested that it was possible that climate fluctuations had a great impact on human evolution in the study area. Before 3.6 ka BP, westward and northward expansion of Neolithic cultures in the Poyang Lake watershed occurred under the background of climate amelioration (becoming warmer and wetter). The ancient people lived in the hilly areas with high elevation. The simple mode of a fishing and gathering economy was mostly suited to this area in the early Neolithic Age. The scope of human activities was expanded and cultural diversity developed in the late Neolithic Age. However, with population growth and increasing survival pressure in a dry-cold climatic stage after 3.6 ka BP, this sim-pie living mode had to be abandoned, and various forms of economy, the majority being ag- riculture, were developed on flood plains of the lower reaches of numerous rivers around Poyang Lake. This promoted flourishing of the Bronze culture of South China.
基金National Natural Science Foundation of China,No.41165005,No.40865005
文摘The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change characteristic in this high-latitude, cold and data-insufficient region is of great importance to maintaining ecological safety and corre- sponding to global climate changes. In this article, the annual average temperature, precipi- tation and sunshine duration series were firstly constructed using tree-ring data and the me- teorological observation data. Then, using the climate tendency rate method, moving-t-testing method, Yamamoto method and wavelet analysis method, we have investigated the climate changes in the region during the past 307 years. Results indicate that, since 1707, the annual average temperature increased significantly, the precipitation increased slightly and the sun- shine duration decreased, with the tendency rates of 0.06~C/10a, 0.79 mm/10a and -5.15 h/10a, respectively (P〈~0.01). Since the 21 st century, the period with the greatest increase of the annual average temperature (also with the greatest increase of precipitation) corresponds to the period with greatest decrease of sunshine duration. Three sudden changes of the an- nual average temperature and sunshine duration occurred in this period while two sudden changes of precipitation occurred. The strong sudden-change years of precipitation and sunshine duration are basically consistent with the sudden-change years of annual average temperature, suggesting that in the mid-1860s, the climatic sudden change or transition really existed in this region. In the time domain, the climatic series of this region exhibit obvious local variation characteristics. The annual average temperature and sunshine duration exhibit the periodic variations of 25 years while the precipitation exhibits a periodic variation of 20 years. Based on these periodic characteristics, one can infer that in the period from 2013 to 2030, the temperature will be at a high-temperature stage, the precipitation will be at an abundant-precipitation stage and the sunshine duration will be at an less-sunshine stage. In terms of spatial distribution, the leading distribution type of the annual average temperature in this region shows integrity, i.e:, it is easily higher or lower in the whole region; and the second distribution type is more (or less) in the southwest parts and less (or more) in the northeast parts. Precipitation and sunshine duration exhibit complex spatial distribution and include four spatial distribution types. The present study can provide scientific basis for the security in- vestigation of homeland, ecological and water resources as well as economic development programming in China's northern borders.