期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
浅谈皮肤图像质量在AI研究中的价值 被引量:1
1
作者 孟如松 李艺鹏 +2 位作者 胡博 刘海军 杨世飞 《皮肤科学通报》 2018年第2期229-237,共9页
近年,以深度学习技术为代表的人工智能(AI)正席卷各行各业,而AI框架有多种,多数采用深度卷积神经网络(CNN)技术结合迁移学习进行训练,虽然在皮肤AI研究中取得长足进展,但其研究结果未能真正走出实验室进入临床应用。制约这些因素主要是... 近年,以深度学习技术为代表的人工智能(AI)正席卷各行各业,而AI框架有多种,多数采用深度卷积神经网络(CNN)技术结合迁移学习进行训练,虽然在皮肤AI研究中取得长足进展,但其研究结果未能真正走出实验室进入临床应用。制约这些因素主要是缺乏高质量的皮肤疾病图像的大型数据集。本文针对皮肤科常见的图像采集方法,包括临床摄影图像、皮肤镜图像、反射式共聚焦激光扫描显微镜(RCM)图像、皮肤B超图像和组织病理图像的质量要素进行探讨和述评,希望对解决因皮肤图像质量的问题而影响AI研究进展的瓶颈问题能有所帮助。 展开更多
关键词 皮肤图像质量 人工智能 皮肤摄影图像 皮肤图像 反射式共聚焦激光扫描显微镜图像 皮肤超声图像 组织病理图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部