Wet-resistant flexible electronics have acquired increasing attention on applications in wet environments,such as sweaty skin, rainy weather, biological fluids, and underwater. However, it remains challenging to achie...Wet-resistant flexible electronics have acquired increasing attention on applications in wet environments,such as sweaty skin, rainy weather, biological fluids, and underwater. However, it remains challenging to achieve nonswelling and underwater self-healing hydrogel sensors for the mechanical perception in aqueous solutions. Herein, a selfhealing and non-swellable hydrogel is successfully fabricated,which presents an automatically healing behavior in various aquatic environments, including deionized water, seawater,sweat, alkali and acidic aqueous solutions. Moreover, the hydrogel demonstrates high stretchability and stable electromechanical sensing properties in water. Furthermore, an electronic skin is designed with the features of fast responsiveness, reliability, and high sensitivity for detecting breathing, speaking, coughing, and diverse body movements. The self-healing hydrogel sensors enable a brilliant mechanical sensibility for detecting a series of dynamic stimuli in air and underwater, even after the healing of fracture interface in water. The underwater self-healing and anti-swelling hydrogel would provide enticing potential on various stable electronic devices for aquatic environments, such as implantable electrodes, triboelectric nanogenerators, and underwater soft robotics.展开更多
基金supported by the National Natural Science Foundation of China (51873024)the grant from Science and Technology Department of Jilin Province (20200708102YY)。
文摘Wet-resistant flexible electronics have acquired increasing attention on applications in wet environments,such as sweaty skin, rainy weather, biological fluids, and underwater. However, it remains challenging to achieve nonswelling and underwater self-healing hydrogel sensors for the mechanical perception in aqueous solutions. Herein, a selfhealing and non-swellable hydrogel is successfully fabricated,which presents an automatically healing behavior in various aquatic environments, including deionized water, seawater,sweat, alkali and acidic aqueous solutions. Moreover, the hydrogel demonstrates high stretchability and stable electromechanical sensing properties in water. Furthermore, an electronic skin is designed with the features of fast responsiveness, reliability, and high sensitivity for detecting breathing, speaking, coughing, and diverse body movements. The self-healing hydrogel sensors enable a brilliant mechanical sensibility for detecting a series of dynamic stimuli in air and underwater, even after the healing of fracture interface in water. The underwater self-healing and anti-swelling hydrogel would provide enticing potential on various stable electronic devices for aquatic environments, such as implantable electrodes, triboelectric nanogenerators, and underwater soft robotics.