期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多尺度和边界融合的皮肤病变区域分割网络
1
作者 王国凯 张翔 王顺芳 《计算机科学与探索》 CSCD 北大核心 2024年第7期1826-1837,共12页
皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分... 皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分割的多尺度和边界融合网络(MSBF-Net)。首先,提出了分裂池化(SplitPool)模块,在缩小图像分辨率的同时有效地解决了空间信息丢失的问题。其次,提出了全尺度特征融合(FSFF)模块,有效地解决了以往方法仅将深层特征向浅层特征融合,而忽略了更浅层特征中的细节信息对网络分割决策的贡献问题。同时,重新设计了U-Net原有的跳跃连接,为解码器提供了更丰富的上下文信息。最后,提出了用于增强网络对边界特征学习能力的子路径,并引入边界融合(BF)模块将主路径和子路径的预测结果进行融合,有效地解决了病变区域形状不规则和边界模糊问题。在ISIC2018数据集上,Dice和JI分别达到了90.12%和83.61%,比基线网络分别提高了1.13个百分点和1.62个百分点;在PH2数据集上,Dice和JI分别达到了94.72%和90.18%,比基线网络分别提高了1.49个百分点和2.17个百分点。实验结果表明,MSBFNet显著提升了皮肤病变区域分割的精确度,并在多个指标上超过了现有的先进方法,进一步验证了方法的有效性。 展开更多
关键词 皮肤病变区域分割 跳跃连接 边界特征 特征融合 注意力机制
下载PDF
基于APC-UNet模型的皮肤病变区域分割研究
2
作者 张博源 黄成泉 +2 位作者 王琴 万林江 周丽华 《四川轻化工大学学报(自然科学版)》 CAS 2023年第5期51-59,共9页
针对皮损皮肤镜图像分割不准确的问题,本文提出了一种基于Atrous-spatial-pyramid-pooling Parallel Coordinate-attention pattern U-Net(APC-UNet)模型的皮肤病变区域分割算法。算法在U-Net模型的编码器中融入Atrous Spatial Pyramid ... 针对皮损皮肤镜图像分割不准确的问题,本文提出了一种基于Atrous-spatial-pyramid-pooling Parallel Coordinate-attention pattern U-Net(APC-UNet)模型的皮肤病变区域分割算法。算法在U-Net模型的编码器中融入Atrous Spatial Pyramid Pooling(ASPP)模块和ParNet模块以提升模型的特征提取能力,在解码器中嵌入带有注意力机制的Coordinate Attention(CA)模块以增强模型的定位能力,并且引入了Lovász-hinge损失函数来解决皮损皮肤镜图像样本类别不均衡的问题。通过消融实验验证了提出的模型的改进合理性,通过对比实验结果表明,APC-UNet模型整体上优于5种对比模型,并且相较于基准模型U-Net,在Dice系数、IoU、精确率、召回率和准确度上分别提升了6.14%、8.11%、6.79%、2.28%和2.49%,各项性能指标均有较好提升,是一种有效可行的皮肤病变区域分割算法。 展开更多
关键词 计算机辅助诊断 皮肤病变区域分割 深度学习 U-Net模型 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部