期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度残差网络的皮肤癌黑色素瘤识别
被引量:
14
1
作者
管秋
李疆
+2 位作者
胡海根
龚明杰
陈峰
《浙江工业大学学报》
CAS
北大核心
2019年第4期430-435,共6页
作为皮肤癌黑色素瘤主要检查手段的皮肤镜图像存在显著性低、类内差异大和样本数据量少等问题,难以采用传统算法实现高准确的识别。深度学习算法引入皮肤癌症检测,提出了一种基于深度残差网络的黑色素瘤识别算法。该算法通过构建深度残...
作为皮肤癌黑色素瘤主要检查手段的皮肤镜图像存在显著性低、类内差异大和样本数据量少等问题,难以采用传统算法实现高准确的识别。深度学习算法引入皮肤癌症检测,提出了一种基于深度残差网络的黑色素瘤识别算法。该算法通过构建深度残差网络提取皮肤镜图像的高维特征,使用残差学习防止网络梯度退化、降低网络训练的难度,实现了黑色素瘤的有效识别。相关仿真实验结果表明:所提出的基于深度残差网络的黑色素瘤识别算法性能明显优于基于卷积神经网络传统的算法,具有更高的准确性、敏感性、特异性和鲁棒性。
展开更多
关键词
黑色素瘤识别
皮肤病损分类
残差学习
深度神经网络
下载PDF
职称材料
题名
基于深度残差网络的皮肤癌黑色素瘤识别
被引量:
14
1
作者
管秋
李疆
胡海根
龚明杰
陈峰
机构
浙江工业大学计算机科学与技术学院
浙江大学附属第一医院
出处
《浙江工业大学学报》
CAS
北大核心
2019年第4期430-435,共6页
文摘
作为皮肤癌黑色素瘤主要检查手段的皮肤镜图像存在显著性低、类内差异大和样本数据量少等问题,难以采用传统算法实现高准确的识别。深度学习算法引入皮肤癌症检测,提出了一种基于深度残差网络的黑色素瘤识别算法。该算法通过构建深度残差网络提取皮肤镜图像的高维特征,使用残差学习防止网络梯度退化、降低网络训练的难度,实现了黑色素瘤的有效识别。相关仿真实验结果表明:所提出的基于深度残差网络的黑色素瘤识别算法性能明显优于基于卷积神经网络传统的算法,具有更高的准确性、敏感性、特异性和鲁棒性。
关键词
黑色素瘤识别
皮肤病损分类
残差学习
深度神经网络
Keywords
melanoma recognition
skin lesion classification
residual learning
deep neural network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度残差网络的皮肤癌黑色素瘤识别
管秋
李疆
胡海根
龚明杰
陈峰
《浙江工业大学学报》
CAS
北大核心
2019
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部