Objective: To clone the full-length cDNA sequence of HSPC016 gene, an aggregative growth related gene in dermal papilla cells (DPC), and analyze its characteristics and predict its biological function. Methods: Ra...Objective: To clone the full-length cDNA sequence of HSPC016 gene, an aggregative growth related gene in dermal papilla cells (DPC), and analyze its characteristics and predict its biological function. Methods: Rapid amplification of cDNA ends (RACE) technology was entailed to amplify the 5' and 3' sequences of HSPC016. The amplified fragments were TA-cloned, sequenced and spliced together to obtain the full-length cDNA. Its chromosome localization, domain and possible function were analyzed by bioinformatic methods. Results.. Two isoforms, 400 bp and 493 bp, were obtained. The gene was mapped on chromosome 3q21. 31, and was conservative on evolution. HSPC016, a 64aa protein, belongs to PD053992 protein family and its functional domain was homologous to T2FA gene. Conclusion: PISPC016 may be related to transcriptional regulation and its protein product may act as a subunit of a transcriptional complex and play a role on DPC growth and differentiation through facilitating or suppressing other genes' transcription within the nucleus.展开更多
This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) be...This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.展开更多
基金Supported by the National Natural Science Foundation of China (No.30200249)
文摘Objective: To clone the full-length cDNA sequence of HSPC016 gene, an aggregative growth related gene in dermal papilla cells (DPC), and analyze its characteristics and predict its biological function. Methods: Rapid amplification of cDNA ends (RACE) technology was entailed to amplify the 5' and 3' sequences of HSPC016. The amplified fragments were TA-cloned, sequenced and spliced together to obtain the full-length cDNA. Its chromosome localization, domain and possible function were analyzed by bioinformatic methods. Results.. Two isoforms, 400 bp and 493 bp, were obtained. The gene was mapped on chromosome 3q21. 31, and was conservative on evolution. HSPC016, a 64aa protein, belongs to PD053992 protein family and its functional domain was homologous to T2FA gene. Conclusion: PISPC016 may be related to transcriptional regulation and its protein product may act as a subunit of a transcriptional complex and play a role on DPC growth and differentiation through facilitating or suppressing other genes' transcription within the nucleus.
文摘This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.