Aim: To study the effects of rhynchophylline (Rhy) on the L type calcium channels in freshly dissociated cortical neurons of Wistar rats during acute hypoxia. Methods: Cell attached configuration of patch clamp tech...Aim: To study the effects of rhynchophylline (Rhy) on the L type calcium channels in freshly dissociated cortical neurons of Wistar rats during acute hypoxia. Methods: Cell attached configuration of patch clamp technique. L type calcium channel was activated by stepping from 40 mV to 0 mV. Results: The results showed that the L type calcium channels of cortical neurons were activated by acute hypoxia. The mean open time of the channel was increased, the mean close time decreased and the open state probability raised during acute hypoxia. Rhy (15 and 30μmol·L -1 ) in concentration dependent manner blocked activity of the channels. The drug shortened the mean open time of the channels from 8 87 ms to 3 03 ms and 2 23 ms ( P 【0 001), prolonged the mean close time from 9 23 ms to 38 84 ms and 54 43 ms ( P 【0 001), and decreased the open state probability from 0 142 to 0 031 and 0 025 ( P 【0 001) under the hypoxia condition, respectively. The effects of Rhy were similar to but weaker than those of verapamil (15 μmol·L -1 ). Conclusion: The study confirmed that Rhy has the blockade effects on L type calcium channels in cortical neurons of rats during hypoxia, by which it protects the brain from hypoxic injury.展开更多
Objective To study the electrophysiological properties of sodium channels in the apical membrane of human nasal epithelial cells Method Nasal epithelial cells of human inferior turbinate from patients with obstru...Objective To study the electrophysiological properties of sodium channels in the apical membrane of human nasal epithelial cells Method Nasal epithelial cells of human inferior turbinate from patients with obstructive sleep apnea syndrome were cultured in serum free medium on collagen gel coated membranes at an air liquid interface and studied by a patch clamp technique Results In cell attached patches, a typical single channel current with a conductance of 21 09?pS and reversal potential of -50 96 were recorded The permeability ratio P Na /P K was more than 5 80 In the presence of 10 4 mmol/L amiloride in the pipette, the incidence of sodium channels decreased from 26 67% to 5 13% This revealed that a population of channels were inhibited by amiloride at a dose of 10 4 mmol/L Ca 2+ at dose of 10 3 mmol/L did not influence the incidence of sodium channels There was no obvious association between voltage and the open probability of the channels Conclusions Our results indicate that most Na + channels in cell attached patches of human nasal epithelial cells are amiloride sensitive and Na + selective Only a few channels are amiloride insensitive The channels were not activated by extracellular Ca 2+ and the open probability followed a voltage independent manner展开更多
文摘Aim: To study the effects of rhynchophylline (Rhy) on the L type calcium channels in freshly dissociated cortical neurons of Wistar rats during acute hypoxia. Methods: Cell attached configuration of patch clamp technique. L type calcium channel was activated by stepping from 40 mV to 0 mV. Results: The results showed that the L type calcium channels of cortical neurons were activated by acute hypoxia. The mean open time of the channel was increased, the mean close time decreased and the open state probability raised during acute hypoxia. Rhy (15 and 30μmol·L -1 ) in concentration dependent manner blocked activity of the channels. The drug shortened the mean open time of the channels from 8 87 ms to 3 03 ms and 2 23 ms ( P 【0 001), prolonged the mean close time from 9 23 ms to 38 84 ms and 54 43 ms ( P 【0 001), and decreased the open state probability from 0 142 to 0 031 and 0 025 ( P 【0 001) under the hypoxia condition, respectively. The effects of Rhy were similar to but weaker than those of verapamil (15 μmol·L -1 ). Conclusion: The study confirmed that Rhy has the blockade effects on L type calcium channels in cortical neurons of rats during hypoxia, by which it protects the brain from hypoxic injury.
文摘Objective To study the electrophysiological properties of sodium channels in the apical membrane of human nasal epithelial cells Method Nasal epithelial cells of human inferior turbinate from patients with obstructive sleep apnea syndrome were cultured in serum free medium on collagen gel coated membranes at an air liquid interface and studied by a patch clamp technique Results In cell attached patches, a typical single channel current with a conductance of 21 09?pS and reversal potential of -50 96 were recorded The permeability ratio P Na /P K was more than 5 80 In the presence of 10 4 mmol/L amiloride in the pipette, the incidence of sodium channels decreased from 26 67% to 5 13% This revealed that a population of channels were inhibited by amiloride at a dose of 10 4 mmol/L Ca 2+ at dose of 10 3 mmol/L did not influence the incidence of sodium channels There was no obvious association between voltage and the open probability of the channels Conclusions Our results indicate that most Na + channels in cell attached patches of human nasal epithelial cells are amiloride sensitive and Na + selective Only a few channels are amiloride insensitive The channels were not activated by extracellular Ca 2+ and the open probability followed a voltage independent manner