The explosive seismic sounding profile across the transition zone from the west Kunlun Mts. to the Tarim Basin revealed the complex deep structure formed by continent-continent collision on the northern margin of the ...The explosive seismic sounding profile across the transition zone from the west Kunlun Mts. to the Tarim Basin revealed the complex deep structure formed by continent-continent collision on the northern margin of the Tibetan Plateau. The profile shows that the attitude of the Moho is in agreement with that of the crystalline basement in the Tarim Basin and the whole crust dips as a thick slate southwards with an angle from 5° to 7°. Meanwhile, the Moho depth increases from 40 km to 57 km within a distance of 150 km in the southern Tarim region, depicting the subduction of the crust of this region towards the west Kunlun Mts. The crust of the northern slope of the west Kunlun Mts. shows an evident compressed and shortened feature, that is, the basement is uplifted, the interface dips northwards and the Moho rises abruptly to become flat, so that the lower crust is as thick as 20 km.展开更多
The Helan Mountains and Yinchuan Basin (HM-YB) are located at the northern end of the North-South tectonic belt, and form an intraplate tectonic deformation zone in the western margin of the North China Craton (NCC...The Helan Mountains and Yinchuan Basin (HM-YB) are located at the northern end of the North-South tectonic belt, and form an intraplate tectonic deformation zone in the western margin of the North China Craton (NCC). The HM-YB has a complicated history of formation and evolution, and is tectonically active at the present day. It has played a dominant role in the complex geological structure and modem earthquake activities of the region. A 135-km-long deep seismic reflection profile across the HM-YB was acquired in early 2014, which provides detailed information of the lithospheric structure and faulting characteristics from near-surface to various depths in the region. The results show that the Moho gradually deepens from east to west in the depth range of 40-48 km along the profile. Significant differences are present in the crustal structure of different tectonic units, including in the distribution of seismic velocities, depths of intra-cmstal discontinuities and undulation pattern of the Moho. The deep seismic reflection profile further reveals distinct structural characteristics on the opposite sides of the Helan Mountains. To the east, The Yellow River fault, the eastern piedmont fault of the Helan Mountains, as well as multiple buried faults within the Yinchuan Basin are all normal faults and still active since the Quaternary. These faults have controlled the Cenozoic sedimentation of the basin, and display a "negative-flower" structure in the profile. To the west, the Bayanhaote fault and the western piedmont fault of the Helan Mountains are east-dipping thrust faults, which caused folding, thrusting, and structural deformation in the Mesozoic stratum of the Helan Mountains uplift zone. A deep-penetrating fault is identified in the western side of the Yinchuan Basin. It has a steep inclination cutting through the middle-lower crust and the Moho, and may be connected to the two groups of faults in the upper crest. This set of deep and shallow fault system consists of both strike-slip, thrust, and normal faults formed over different eras, and provides the key tectonic conditions for the basin-mountains coupling, crustal deformation and crust-mantle interactions in the region. The other important phenomenon revealed from the results of deep seismic reflection profiling is the presence of a strong upper mantle reflection (UMR) at a depth of 82-92 km beneath the HM-YB, indicating the existence of a rapid velocity variation or a velocity discontinuity in that depth range. This is possibly a sign of vertical structural inhomogeneity in the upper mantle of the region. The seismic results presented here provide new clues and observational bases for further study of the deep structure, structural differences among various blocks and the tectonic relationship between deep and shallow processes in the western NCC.展开更多
基金the Ministry of Land and Resources of China (Grant No. 9501204), the National Natural Science Foundation of China (Grant No. F49734230), National 305 Project of Xinjiang Uygur Autonomous Region of China (Grant No. 96-915-07-03), and Chinese National Key
文摘The explosive seismic sounding profile across the transition zone from the west Kunlun Mts. to the Tarim Basin revealed the complex deep structure formed by continent-continent collision on the northern margin of the Tibetan Plateau. The profile shows that the attitude of the Moho is in agreement with that of the crystalline basement in the Tarim Basin and the whole crust dips as a thick slate southwards with an angle from 5° to 7°. Meanwhile, the Moho depth increases from 40 km to 57 km within a distance of 150 km in the southern Tarim region, depicting the subduction of the crust of this region towards the west Kunlun Mts. The crust of the northern slope of the west Kunlun Mts. shows an evident compressed and shortened feature, that is, the basement is uplifted, the interface dips northwards and the Moho rises abruptly to become flat, so that the lower crust is as thick as 20 km.
基金supported by the National Natural Science Foundation of China(Grant No.91214205)the Special Scientific Research of Seismological Industry(Grant No.201408023)
文摘The Helan Mountains and Yinchuan Basin (HM-YB) are located at the northern end of the North-South tectonic belt, and form an intraplate tectonic deformation zone in the western margin of the North China Craton (NCC). The HM-YB has a complicated history of formation and evolution, and is tectonically active at the present day. It has played a dominant role in the complex geological structure and modem earthquake activities of the region. A 135-km-long deep seismic reflection profile across the HM-YB was acquired in early 2014, which provides detailed information of the lithospheric structure and faulting characteristics from near-surface to various depths in the region. The results show that the Moho gradually deepens from east to west in the depth range of 40-48 km along the profile. Significant differences are present in the crustal structure of different tectonic units, including in the distribution of seismic velocities, depths of intra-cmstal discontinuities and undulation pattern of the Moho. The deep seismic reflection profile further reveals distinct structural characteristics on the opposite sides of the Helan Mountains. To the east, The Yellow River fault, the eastern piedmont fault of the Helan Mountains, as well as multiple buried faults within the Yinchuan Basin are all normal faults and still active since the Quaternary. These faults have controlled the Cenozoic sedimentation of the basin, and display a "negative-flower" structure in the profile. To the west, the Bayanhaote fault and the western piedmont fault of the Helan Mountains are east-dipping thrust faults, which caused folding, thrusting, and structural deformation in the Mesozoic stratum of the Helan Mountains uplift zone. A deep-penetrating fault is identified in the western side of the Yinchuan Basin. It has a steep inclination cutting through the middle-lower crust and the Moho, and may be connected to the two groups of faults in the upper crest. This set of deep and shallow fault system consists of both strike-slip, thrust, and normal faults formed over different eras, and provides the key tectonic conditions for the basin-mountains coupling, crustal deformation and crust-mantle interactions in the region. The other important phenomenon revealed from the results of deep seismic reflection profiling is the presence of a strong upper mantle reflection (UMR) at a depth of 82-92 km beneath the HM-YB, indicating the existence of a rapid velocity variation or a velocity discontinuity in that depth range. This is possibly a sign of vertical structural inhomogeneity in the upper mantle of the region. The seismic results presented here provide new clues and observational bases for further study of the deep structure, structural differences among various blocks and the tectonic relationship between deep and shallow processes in the western NCC.