[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide s...[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards.展开更多
[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility con...[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility conditions,the ecological remediation materials and related technologies for soil moisture had been studied using layered silicates as substrate materials and using straw turnover as the method.The application research had been carried out in degraded cultivated land,compacted land,saline-alkali soil and laboratory of nine provinces and regions on 26 species and 48 varieties.[Result] The materials and related technologies are environment-friendly in formula,processing,application with no hidden trouble as secondary pollution,which can be used for the restoration of positive balance of soil moisture conditions(water,fertilizer,gas,and heat),establishment of the core of a stable circle and improving food production steadily.The materials are more suitable for plant growth than chemical fertilizers,applying of which helps plants obtain better adversity resistance.[Conclusion] The ecological remediation materials for soil moisture can reduce the application of chemical fertilizers effectively and improve the production and quality of crops remarkably.展开更多
Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to o...Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.展开更多
Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has bee...Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has been widely accepted as the most potentially useful method for seagrass restoration over large areas. We examined the influence of key environmental factors on seed germination to help promote eelgrass bed restoration. Under anoxic conditions, the influence of temperature and salinity on the germination rate of eelgrass (Zostera marina L.) seeds was examined at different combinations of four temperatures (4, 9, 14, and 24℃) and nine salinities (5 to 45, increment of 5). The effect of significant interaction of temperature and salinity on germination rate was observed (ANOVA) (P<0.001). The highest germination rate (83.3 ± 3.5)% was reached in 8 weeks at 14℃ and salinity 5. Higher temperature significantly increased the germination rate at salinity 5 (P<0.001) during the whole observation period except for 24℃, while lower salinity significantly increased the germination rate at 14℃ (P<0.001). Although significant interaction was found between temperature and salinity (P<0.001), the influence of salinity was stronger than that of temperature for the germination of eelgrass seeds. These results provide useful information for the propagation of artificial seedlings for seagrass restoration in China.展开更多
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations i...Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO - 3 N, NO - 2 N, NH + 4 N, SiO 2- 3 Si, PO 3- 4 P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C , the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D , the coefficient of water temperature’s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant nutrient concentrations but low phytoplankton biomass in some waters is reasonably explained in this paper.展开更多
Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. ...Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. Results show that salinity increases from 14.0 PSU upstream to 30.4 PSU downstream. Lowest DO range was 2.3-4.1 mg/L. TSS ranged was 20-135 mg/L and the highest was observed near construction and residential areas, the second and third highest near shrimp culture discharge areas. BOD5 was the highest near construction and residential areas. BOD5 of a station near shrimp culture was not significantly different from the residential areas. Two stations near shrimp culture site also recorded the highest Chl-a. The highest ammonia-nitrogen, nitrite-nitrogen and reactive phosphorus were observed at stations near shrimp farm sites whereas nitrate-nitrogen was the highest near construction and residential areas. Cage culture site showed the highest phosphorus and second highest nitrite-nitrogen and ammonia-nitrogen. This study showed that TSS and BOD5 were elevated near residential and construction areas and nutrients were elevated near shrimp farm sites resulting in algal bloom. Therefore, it is recommended that residential and shrimp farm discharge be treated to acceptable quality before discharge to protect the aquatic resources.展开更多
As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one...As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.展开更多
Three continuous marine fish cell lines of FG (i.e., Flounder Gill) from flounder ( Paralichthys olivaceus) gill, SPH (i.e., Sea Perch Heart) from sea perch ( Lateolabrax japonicus ) heart and RSBF (i.e., Red Sea...Three continuous marine fish cell lines of FG (i.e., Flounder Gill) from flounder ( Paralichthys olivaceus) gill, SPH (i.e., Sea Perch Heart) from sea perch ( Lateolabrax japonicus ) heart and RSBF (i.e., Red Sea Bream Fin) from red sea bream ( Pagrosomus major ) fin, were characterized by lactate dehydrogenase (LDH) isozyme and morphological analysis. The LDH isozyme patterns of these three cell lines and their corresponding tissues of origin were investigated and compared. The results showed: (1) No difference was found in the LDH isozyme patterns of FG and flounder gill tissue. However, the LDH isozyme patterns of SPH and RSBF were significantly different from their corresponding tissues of origin; (2) LDH isozyme patterns of FG, SPH and RSBF were markedly different from each other and could serve as genetic markers for species identification and detection of cross contamination. Morphological change analysis of these three cell lines in comparison to their original tissues indicated that FG cells still appeared epithelioid without morphological transformation. However, morphological changes were found in SPH and RSBF compared to their original tissues. Therefore, the cellular morphology was still plastic in the relatively stable culture conditions, and it was possible that change of LDH patterns was related to morphological changes of fish cells in vitro .展开更多
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline...Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.展开更多
The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemica...The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods(atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013–2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate-and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S^(2-) prevail in the bottom sediments; its derivative—elemental S^0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S^(2-), and in chloride lakes is thiosulfate sulfur S_2O_2^(3ˉ). The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.展开更多
Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lo...Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lowlands around the world, especially in the tropical and subtropical areas. The presence of ASS in the South China has been recognized but their distribution may be largely underestimated because the soil survey data concerning ASS are based on unreliable methods and techniques. ASS in the South China have been traditionally used for rice cultivation and this practice has been proved sustainable if appropriate improvement measures are adopted. Recently, the rapid economic growth in the region has resulted in intensified coastal development which frequently involves activities that may disturb ASS. Construction of roads, foundations and aquaculture ponds may cause the exposure of ASS to air and bring about severe environmental acidification. There is currently insufficient awareness of the problems among the researchers, policy-makers and land managers in the South China. More atteation must be paid to the possible ASSderived environmental degradation in order to ensure a sustainable development of the coastal lowlands in the South China region.展开更多
Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel...Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.展开更多
Water is the foundation of an arid ecological system, as the quantity and quality of surface water and groundwater determine its structure and function. The study on the relationship between water and ecosystem is the...Water is the foundation of an arid ecological system, as the quantity and quality of surface water and groundwater determine its structure and function. The study on the relationship between water and ecosystem is the basis of ecosystem protection. Taking the Ejina delta, an extremely arid area located downstream of the Heihe River in northwestern China, as an example, this article gives an overviewe of the study in three aspects: (1) the groundwater table and salinity dynamics and their driving factors, (2) the groundwater depth and salt threshold of natural vegetation ecosystem, and (3) the impact evaluation of ecological flow control on Ejina natural vegetation. The authors point out the importance of the research into the relation between water and ecosystem and its key difficulties and weakness, and put forward strategies for promoting the study processes.展开更多
Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in ...Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.展开更多
This article presents the results of hydrochemical and hydrobiological studies of shallow saline lakes of the Borzya group(Zabaikalsky Krai, Russia) at the initial filling phase. The lake-margin ecosystems of the stud...This article presents the results of hydrochemical and hydrobiological studies of shallow saline lakes of the Borzya group(Zabaikalsky Krai, Russia) at the initial filling phase. The lake-margin ecosystems of the studied lakes are characterized by varying degrees of salinity from polyhaline to brine water. Cyclical variations of meteorological conditions and high salinity determined that the compositions of the aquatic organisms are specific, mostly between stenohaline and euryhaline species, the quantities are low, and the community structures are simple.展开更多
In arid and semi-arid regions soil salinity is a constraint for the development of plants and a threat to balance food in these soils some species are threatened with extinction. Two natural constraints drought and sa...In arid and semi-arid regions soil salinity is a constraint for the development of plants and a threat to balance food in these soils some species are threatened with extinction. Two natural constraints drought and salinity have altered the ecosystem stability, but it has always conditions more or less favorable to the existence of a spontaneous flora adapted to the climatic and edaphic stress. The aim of this study is to describe a halophyte native tree and its climatic and edaphic requirements, it is a case of Limoniastrum guyonianum. According to this survey L. guyonianum, grows well under high temperature, insolation and evaporation and low rainfall and humidity. The species tolerate the soil basic pH, salinity, calcareous and do not need the organic matter and chlorure ions There are some morphological adaptations in the L. guyonianium to the several conditions as the length of the root and cylindrical shapes of the leaves and their extraction of salt.展开更多
Water resource is the important factor for sustainable development in Weigan River catchments in western China. Based on ecological hydrology principles, the coupling relation between water and salt is monitored and a...Water resource is the important factor for sustainable development in Weigan River catchments in western China. Based on ecological hydrology principles, the coupling relation between water and salt is monitored and analyzed. The water quality for irrigation in oasis ecosystem has a larger variable range in arid area, which depending on the input water resource and underground water mineralization degree and water chemical component on the catchments scale, the water and salt coupling is decided by the climate condition and soil feature and vegetation characteristics as well as human activity. Meanwhile, temporal and spatial change between water and salt is quite complicated. The environmental management should be paid attention to considering in irrigation area in the catchments.展开更多
基金Supported by National Land and Resources Investigation Program(200414200005)~~
文摘[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards.
基金Supported by Support Forestry Science and Technology Project of State Forestry Administration(2006BAD261003-3)Natural Science Foundation of Science & Technology Ministry of China(50872085)Project of Beijing Agricultural Technology Extension Station(20100203)~~
文摘[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility conditions,the ecological remediation materials and related technologies for soil moisture had been studied using layered silicates as substrate materials and using straw turnover as the method.The application research had been carried out in degraded cultivated land,compacted land,saline-alkali soil and laboratory of nine provinces and regions on 26 species and 48 varieties.[Result] The materials and related technologies are environment-friendly in formula,processing,application with no hidden trouble as secondary pollution,which can be used for the restoration of positive balance of soil moisture conditions(water,fertilizer,gas,and heat),establishment of the core of a stable circle and improving food production steadily.The materials are more suitable for plant growth than chemical fertilizers,applying of which helps plants obtain better adversity resistance.[Conclusion] The ecological remediation materials for soil moisture can reduce the application of chemical fertilizers effectively and improve the production and quality of crops remarkably.
基金Project supported by the National Natural Science Foundation of China (Nos. 50339030 and 90202001).
文摘Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.
基金supported by a Municipal Research and Developmental Program of Science and Technology of Yantai, Shandong Province, China (Grant No. 2009211)an Open Foundation of the State Oce-anic Administration of China (Grant No. 200905020-12)
文摘Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has been widely accepted as the most potentially useful method for seagrass restoration over large areas. We examined the influence of key environmental factors on seed germination to help promote eelgrass bed restoration. Under anoxic conditions, the influence of temperature and salinity on the germination rate of eelgrass (Zostera marina L.) seeds was examined at different combinations of four temperatures (4, 9, 14, and 24℃) and nine salinities (5 to 45, increment of 5). The effect of significant interaction of temperature and salinity on germination rate was observed (ANOVA) (P<0.001). The highest germination rate (83.3 ± 3.5)% was reached in 8 weeks at 14℃ and salinity 5. Higher temperature significantly increased the germination rate at salinity 5 (P<0.001) during the whole observation period except for 24℃, while lower salinity significantly increased the germination rate at 14℃ (P<0.001). Although significant interaction was found between temperature and salinity (P<0.001), the influence of salinity was stronger than that of temperature for the germination of eelgrass seeds. These results provide useful information for the propagation of artificial seedlings for seagrass restoration in China.
文摘Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO - 3 N, NO - 2 N, NH + 4 N, SiO 2- 3 Si, PO 3- 4 P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C , the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D , the coefficient of water temperature’s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant nutrient concentrations but low phytoplankton biomass in some waters is reasonably explained in this paper.
文摘Developments along the Santubong River basin may have an impact on the aquatic ecosystem. To determine the impacts of activities on the water quality, ten stations were selected for water quality study over 9 months. Results show that salinity increases from 14.0 PSU upstream to 30.4 PSU downstream. Lowest DO range was 2.3-4.1 mg/L. TSS ranged was 20-135 mg/L and the highest was observed near construction and residential areas, the second and third highest near shrimp culture discharge areas. BOD5 was the highest near construction and residential areas. BOD5 of a station near shrimp culture was not significantly different from the residential areas. Two stations near shrimp culture site also recorded the highest Chl-a. The highest ammonia-nitrogen, nitrite-nitrogen and reactive phosphorus were observed at stations near shrimp farm sites whereas nitrate-nitrogen was the highest near construction and residential areas. Cage culture site showed the highest phosphorus and second highest nitrite-nitrogen and ammonia-nitrogen. This study showed that TSS and BOD5 were elevated near residential and construction areas and nutrients were elevated near shrimp farm sites resulting in algal bloom. Therefore, it is recommended that residential and shrimp farm discharge be treated to acceptable quality before discharge to protect the aquatic resources.
基金Under the auspices of National Natural Science Foundation of China (No. 40771162)Key Item of Knowledge Innova-tion Programs of Chinese Academy of Sciences (No.KZCX2-SW-320-1)
文摘As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.
文摘Three continuous marine fish cell lines of FG (i.e., Flounder Gill) from flounder ( Paralichthys olivaceus) gill, SPH (i.e., Sea Perch Heart) from sea perch ( Lateolabrax japonicus ) heart and RSBF (i.e., Red Sea Bream Fin) from red sea bream ( Pagrosomus major ) fin, were characterized by lactate dehydrogenase (LDH) isozyme and morphological analysis. The LDH isozyme patterns of these three cell lines and their corresponding tissues of origin were investigated and compared. The results showed: (1) No difference was found in the LDH isozyme patterns of FG and flounder gill tissue. However, the LDH isozyme patterns of SPH and RSBF were significantly different from their corresponding tissues of origin; (2) LDH isozyme patterns of FG, SPH and RSBF were markedly different from each other and could serve as genetic markers for species identification and detection of cross contamination. Morphological change analysis of these three cell lines in comparison to their original tissues indicated that FG cells still appeared epithelioid without morphological transformation. However, morphological changes were found in SPH and RSBF compared to their original tissues. Therefore, the cellular morphology was still plastic in the relatively stable culture conditions, and it was possible that change of LDH patterns was related to morphological changes of fish cells in vitro .
文摘Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.
基金Supported by the Russian Science Foundation(No.15-17-10003)
文摘The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods(atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013–2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate-and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S^(2-) prevail in the bottom sediments; its derivative—elemental S^0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S^(2-), and in chloride lakes is thiosulfate sulfur S_2O_2^(3ˉ). The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.
文摘Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lowlands around the world, especially in the tropical and subtropical areas. The presence of ASS in the South China has been recognized but their distribution may be largely underestimated because the soil survey data concerning ASS are based on unreliable methods and techniques. ASS in the South China have been traditionally used for rice cultivation and this practice has been proved sustainable if appropriate improvement measures are adopted. Recently, the rapid economic growth in the region has resulted in intensified coastal development which frequently involves activities that may disturb ASS. Construction of roads, foundations and aquaculture ponds may cause the exposure of ASS to air and bring about severe environmental acidification. There is currently insufficient awareness of the problems among the researchers, policy-makers and land managers in the South China. More atteation must be paid to the possible ASSderived environmental degradation in order to ensure a sustainable development of the coastal lowlands in the South China region.
基金Financial support for this work was provided by the National Natural Science Foundation of China (No. 41040011)the Fun-damental Research Funds for the Central Universities (No.CHD2010JC103)
文摘Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.
基金supported by the National Key Basic Research Development Program of China (No.2009CB421305)the National Natural Science Fund of China (No. 91025023)
文摘Water is the foundation of an arid ecological system, as the quantity and quality of surface water and groundwater determine its structure and function. The study on the relationship between water and ecosystem is the basis of ecosystem protection. Taking the Ejina delta, an extremely arid area located downstream of the Heihe River in northwestern China, as an example, this article gives an overviewe of the study in three aspects: (1) the groundwater table and salinity dynamics and their driving factors, (2) the groundwater depth and salt threshold of natural vegetation ecosystem, and (3) the impact evaluation of ecological flow control on Ejina natural vegetation. The authors point out the importance of the research into the relation between water and ecosystem and its key difficulties and weakness, and put forward strategies for promoting the study processes.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups(No.40821004)the High Technology Research and Development Program of China(863 Program)(No.2008AA09Z107)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.
基金Supported by the Projects from the Ministry of Natural Resources of the Zabaikalsky Krai(Nos.7 and VII.79.1)the Siberian Branch of the Russian Academy of Sciences
文摘This article presents the results of hydrochemical and hydrobiological studies of shallow saline lakes of the Borzya group(Zabaikalsky Krai, Russia) at the initial filling phase. The lake-margin ecosystems of the studied lakes are characterized by varying degrees of salinity from polyhaline to brine water. Cyclical variations of meteorological conditions and high salinity determined that the compositions of the aquatic organisms are specific, mostly between stenohaline and euryhaline species, the quantities are low, and the community structures are simple.
文摘In arid and semi-arid regions soil salinity is a constraint for the development of plants and a threat to balance food in these soils some species are threatened with extinction. Two natural constraints drought and salinity have altered the ecosystem stability, but it has always conditions more or less favorable to the existence of a spontaneous flora adapted to the climatic and edaphic stress. The aim of this study is to describe a halophyte native tree and its climatic and edaphic requirements, it is a case of Limoniastrum guyonianum. According to this survey L. guyonianum, grows well under high temperature, insolation and evaporation and low rainfall and humidity. The species tolerate the soil basic pH, salinity, calcareous and do not need the organic matter and chlorure ions There are some morphological adaptations in the L. guyonianium to the several conditions as the length of the root and cylindrical shapes of the leaves and their extraction of salt.
文摘Water resource is the important factor for sustainable development in Weigan River catchments in western China. Based on ecological hydrology principles, the coupling relation between water and salt is monitored and analyzed. The water quality for irrigation in oasis ecosystem has a larger variable range in arid area, which depending on the input water resource and underground water mineralization degree and water chemical component on the catchments scale, the water and salt coupling is decided by the climate condition and soil feature and vegetation characteristics as well as human activity. Meanwhile, temporal and spatial change between water and salt is quite complicated. The environmental management should be paid attention to considering in irrigation area in the catchments.