期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
化肥与盐土盐分对土壤溶质势影响的比较研究 被引量:3
1
作者 杨金楼 奚振邦 《上海农业学报》 CSCD 2000年第4期60-63,共4页
化肥与盐土盐分以 0 .0 5%与 1.0 0 %浓度施入土壤 ,使同一浓度的溶质势相近 ;而1.0 0 %浓度比 0 .0 5%浓度的溶质势可增高约 3倍。表明化肥与盐土主要含盐成分的化学性质虽有不同 ,但对溶质势的影响一致。在化肥采用全层施、穴施、底... 化肥与盐土盐分以 0 .0 5%与 1.0 0 %浓度施入土壤 ,使同一浓度的溶质势相近 ;而1.0 0 %浓度比 0 .0 5%浓度的溶质势可增高约 3倍。表明化肥与盐土主要含盐成分的化学性质虽有不同 ,但对溶质势的影响一致。在化肥采用全层施、穴施、底施、表施等不同施肥方法时 ,溶质势有差异 ,结果为全层施 >穴施 >底施 >表施 ,似可说明全层施在土壤中分布均匀 ,溶质势增强快。化肥穴施时 ,愈近施肥点则溶质势愈高 ,影响范围可及 15~ 2 0cm。 展开更多
关键词 化肥 盐土盐分 施肥方法 穴施距离 溶质势 土壤
下载PDF
Spatial Distribution of Soil Salinization Based on GIS in Tianjin Binhai New Area 被引量:3
2
作者 廉晓娟 李明悦 +3 位作者 王艳 张余良 贺宏达 王正祥 《Agricultural Science & Technology》 CAS 2012年第5期1046-1049,共4页
The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, an... The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, and the average CI and Na+ contents were 0.27% and 0.22%, respectively. Presenting zonal distribution feature, the soil total salt content increased gradually from west to east of Binhai New Area. Statistics on the distribution areas of different salinization degrees showed that the area of non-salinzed soils only accounted for 3.18% of the total area; with an area of 107.43 km2, mild saline soil accounted for 6.34% of the total area; the area of moderate saline soil was 173.51 km2, accounting for 10.24%; and the area of sal- inzed soils was 217.36 km2, accounting for 12.82% of the total soil area. The area of saline soils (total salt content 〉0.6%) was 1 142.8 km2, accounting 67.42% of the total land area in Binhai New Area. And the areas for the soils with total salt content of 0.6%-1.0%, 1.0%-1.5%, 〉1.5% were respectively 388.47, 411.82, 342.51 km2, accounting for 22.92%, 24.3%, 20.21% of the total area. 展开更多
关键词 GIS Soil satinization Soil total salt content Binhai New Area Spatial distribution
下载PDF
Mechanism of Salt Tolerance in Rice 被引量:35
3
作者 N.HUSSAIN A.ALI +2 位作者 G.SARWAR F.MUJEEB M.TAHIR 《Pedosphere》 SCIE CAS CSCD 2003年第3期233-238,共6页
Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexerc... Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium. 展开更多
关键词 dry matter rice variety SALINITY salt tolerance mechanism selective ionabsorption
下载PDF
Effect of Initial Soluble Salt Composition of Saline Soil on Salinity Tolerance of Barley Plant 被引量:3
4
作者 SHENQI-RONG LIUZHAO-PU 《Pedosphere》 SCIE CAS CSCD 1991年第4期355-362,共8页
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected... A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils. 展开更多
关键词 BARLEY initial soluble Na/ Ca ratio marine saline soil salinity tolerance salt content
下载PDF
Salt Contents in Soils Under Plastic Greenhouse Gardening in China 被引量:67
5
作者 LIWENQING S.VANDERZEE 《Pedosphere》 SCIE CAS CSCD 2001年第4期359-367,共9页
Field experiments were conducted on three main soils, brown soil, meadow soil and cinnamon soil, of Shandong Province to study the effect of plastic greenhouse gardening on soil salt contents. As compared to the open ... Field experiments were conducted on three main soils, brown soil, meadow soil and cinnamon soil, of Shandong Province to study the effect of plastic greenhouse gardening on soil salt contents. As compared to the open fields, the soil nutrient contents in the fields under plastic greenhouse gardening all increased significantly. The organic matter, quickly available N and P increases were extremely significant and the quickly available K increase was also significant. Along with the nutrient increases the soil salt contents increased clearly in all the soils investigated not only in the top layer but also in the deeper layers, being extremely significant in the 0~10 cm layer and significant in the 10~40 cm layers. The salt contents in the plastic greenhouses had significant correlations with the soil available nitrogen and phosphorous. Soils with longer plastic greenhouse gardening time tended to have more salt. The plastic greenhouse soils contained less CO-3~(2-) and much more NO-3 than the open soils, which indicated a higher influence of human intervention in plastic greenhouses. Among the constituent ions, Cl~(-), NO-3~(-) , Ca~(2+) and Mg~(2+) had positive while HCO-3~(-) had negative significant or extremely significant correlations with total salt, with correlation coefficients being 0.66*, 0.80**, 0.92**, 0.80** and -0.64* , respectively. Nitrate decreased from the top to deeper layers both in the plastic greenhouses and in the open fields. The plastic greenhouse soils contained much more nitrate than the open fields in every layer and even the nitrate contents of the 80~l00 cm layer were still several times those of the top layer in the open fields. The main reason for the salt increases was considered to be the inappropriate fertilization and selective absorption of nutrients by plants in the plastic greenhouses. The methods recommended to avoid soil salt increase in the plastic greenhouses were to apply fertilizers rationally according to the soils, vegetables and fertilizer properties and to adopt a good intercropping or rotation system. 展开更多
关键词 FERTILIZATION NITRATE plastic greenhouse salt content VEGETABLE
下载PDF
Regional-scale investigation of salt ions distribution characteristics in bauxite residue: A case study in a disposal area 被引量:6
6
作者 XUE Sheng-guo WANG Qiong-li +3 位作者 TIAN Tao YE Yu-zhen ZHANG Yi-fan ZHU Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期422-429,共8页
Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues t... Revegetation on bauxite residue disposal areas is the most promising strategy to reduce its potential ecological risk during stacking or disposing.Migration of salt ions in bauxite residue is one of the major issues to stimulate soil formation to support plant growth.21 residue samples were collected and the related parameters including exchangeable cations,soluble ions,total salt,pH,electrical conductivity(EC)and exchangeable sodium percentage(ESP)were selected to evaluate alkalization and salinization of bauxite residue.High levels of ions,cation exchange capacity(TOC),total salt,exchangeable sodium percentage(ESP)and cation exchange capacity(CEC)in bauxite residue were detected with greater coefficient of variation(CV),which indicated that distribution characteristics of salt ions varied significantly.The percentage of sulfate-chloride-soda type in the residues accounted for 71.43%.The mean value of pH was 10.10,whilst mean value of ESP was 52.05%.It indicated that the residues in this case study belonged to sulfate-chloride-soda saline and alkaline soil.The research results could provide theoretical basis for soil formation in bauxite residue. 展开更多
关键词 bauxite residue bauxite residue disposal area SALT saline-alkali soil soil formation in bauxite residue
下载PDF
Effect of Water Resources Allocation on Groundwater Environment and Soil Salinity Accumulation under Climate Change
7
作者 Li Ping Qi Xuebin +3 位作者 Magzum Nurolla Huang Zhongdong Liang Zhijie Qiao Dongmei 《Journal of Earth Science and Engineering》 2016年第2期73-82,共10页
The combined surface and groundwater allocation practice by wells and canals had contributed to the safety of groundwater environment and agriculture sustainable production. The typical area in the People's Victory C... The combined surface and groundwater allocation practice by wells and canals had contributed to the safety of groundwater environment and agriculture sustainable production. The typical area in the People's Victory Canal irrigation district was taken as a case, drawing together the irrigation district agriculture water consumption and precipitation from 1954 to 2014 in the People's Victory Canal irrigation district, ratios of surface to groundwater irrigation amount, dynamic of groundwater depth and hydrochemical characteristic of groundwater from 2008 to 2014 in the research area, the relationship between groundwater depth and ratio of surface to groundwater irrigation amount was analyzed, in order to ascertain the influence of precipitation on ratios of surface to groundwater irrigation amount and its effect on soil and groundwater environment. The results indicated that positive correlation between the ratios of surface to groundwater irrigation amount and annual precipitation was appeared, affected by climate change, average irrigation amount from surface in the recent 5 years was 2.90 x 108 cubic meters, accounted for 75.52% of total irrigation amount, on the other hand, decreasing tendency of precipitation was obvious, and groundwater depth dynamic in upstream of the branch canals was more dramatic than downstream because of surface water irrigation infiltration, under the unified condition of water use efficiency, ratio of surface to groundwater irrigation amount was negative correlation with area of the groundwater depth beyond 11 m, meanwhile, groundwater depth demonstrated negative correlation with the ratio of surface to groundwater irrigation amount, moreover, alkaline trend of groundwater hydrochemistry during the normal season in the research area was obvious because of phreatic evaporation and the agricultural irrigation from wells, along with irrigation from surface inflow of Yellow River, quality of groundwater hydrochemistry during the dry season was ameliorative greatly. Consequently, it was very important to the agriculture sustainable production that well-canal combined irrigation patterns alleviated extremely alkaline trend of the groundwater hydrochemistry and played a positive role of root layer soil salinity leaching. 展开更多
关键词 Well-canal combined irrigation district irrigation patterns ratio of surface to groundwater irrigation amount hydrochemical characteristic.
下载PDF
Phosphate Distribution and Movement in Soil-Root In-terface Zone: II. The Infinence of Soil Water Contentand Application Rates of Phosphate
8
作者 XUMING-GANG ZHANGYI-PING 《Pedosphere》 SCIE CAS CSCD 1995年第3期267-274,共8页
The phosphate in the soil-root interface zone under various soil water contents and application rates ofphosphate was still of depletion distribution which could be described by a power function in the form ofC/Co= ax... The phosphate in the soil-root interface zone under various soil water contents and application rates ofphosphate was still of depletion distribution which could be described by a power function in the form ofC/Co= ax ̄b(C/Co is the relative content of fertilized phosphate in a distance from the root surface x, a andb are the regression constants). The depletion rate of phosphate in soil near the root surface was higher andthe depletion range was narrower under lower soil moisture. On the contrary, at higher soil water content thedepletion range was wider, generally The application rate of phosphate led to the greater depletion intensityof phosphorus was higher in the heavier texture soils. In general, the depletion intensity in the soils, whichdecreased with increasing clay content or increa.sing buffering power of soil, decreased in the order as loessalsoil and black fou soil> lou soil> yellow cinnamon soil when 50 or 100 mg of phosphorus were applied in theform of KH_2PO_4. This result indicated that the phosphate distribution and its movement in the soil-rootinterface zone closely related with the buffering capacity of soil. 展开更多
关键词 application rate of phosphate phosphate distribution soil-root interface zone soil watercontent
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部