This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to d...This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.展开更多
Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lo...Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lowlands around the world, especially in the tropical and subtropical areas. The presence of ASS in the South China has been recognized but their distribution may be largely underestimated because the soil survey data concerning ASS are based on unreliable methods and techniques. ASS in the South China have been traditionally used for rice cultivation and this practice has been proved sustainable if appropriate improvement measures are adopted. Recently, the rapid economic growth in the region has resulted in intensified coastal development which frequently involves activities that may disturb ASS. Construction of roads, foundations and aquaculture ponds may cause the exposure of ASS to air and bring about severe environmental acidification. There is currently insufficient awareness of the problems among the researchers, policy-makers and land managers in the South China. More atteation must be paid to the possible ASSderived environmental degradation in order to ensure a sustainable development of the coastal lowlands in the South China region.展开更多
This article discusses the interaction of phthalates and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. Through the experiments on the toxic effects of dimethyl (o-) phthal...This article discusses the interaction of phthalates and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. Through the experiments on the toxic effects of dimethyl (o-) phthalate (DMP), diethyl (o-) phthalate (DEP), dibutyl (o-) phthalate (DBP) on ocean algae, the 50 % lethal concentration of the three substances in 48 h and 96 h for plaeodectylum tricornutum, platymonas sp, isochrysis galbana, and skeletonema costatum is obtained. Tolerance limits of the above ocean algae of DMP, DEP, and DBP are discussed.展开更多
The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been ...The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been proposed to address this grand goal.One is to reduce anthropogenic CO2emissions to the atmosphere,and the other is to increase carbon sinks or negative emissions,i.e.,removing CO2from the atmosphere.Here we advocate eco-engineering approaches for ocean negative carbon emission(ONCE),aiming to enhance carbon sinks in the marine environment.An international program is being established to promote coordinated efforts in developing ONCE-relevant strategies and methodologies,taking into consideration ecological/biogeochemical processes and mechanisms related to different forms of carbon(inorganic/organic,biotic/abiotic,particulate/dissolved) for sequestration.We focus on marine ecosystem-based approaches and pay special attention to mechanisms that require transformative research,including those elucidating interactions between the biological pump(BP),the microbial carbon pump(MCP),and microbially induced carbonate precipitation(MICP).Eutrophic estuaries,hypoxic and anoxic waters,coral reef ecosystems,as well as aquaculture areas are particularly considered in the context of efforts to increase their capacity as carbon sinks.ONCE approaches are thus expected to be beneficial for both carbon sequestration and alleviation of environmental stresses.展开更多
基金The National Key Basic Research Program of China(973 Program)(No.2012CB026200)the Key Project of Chinese Ministry of Education(No.113029A)+1 种基金the National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAB03B09)the Fundamental Research Funds for the Central Universities
文摘This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.
文摘Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds (mainly pyrite) which produce sulfuric acid upon their oxidation. ASS-derived environmental degradation widely occurs in the coastal lowlands around the world, especially in the tropical and subtropical areas. The presence of ASS in the South China has been recognized but their distribution may be largely underestimated because the soil survey data concerning ASS are based on unreliable methods and techniques. ASS in the South China have been traditionally used for rice cultivation and this practice has been proved sustainable if appropriate improvement measures are adopted. Recently, the rapid economic growth in the region has resulted in intensified coastal development which frequently involves activities that may disturb ASS. Construction of roads, foundations and aquaculture ponds may cause the exposure of ASS to air and bring about severe environmental acidification. There is currently insufficient awareness of the problems among the researchers, policy-makers and land managers in the South China. More atteation must be paid to the possible ASSderived environmental degradation in order to ensure a sustainable development of the coastal lowlands in the South China region.
基金The paper was supported by the National Natural Science Foundation of Fujian(B0310001).
文摘This article discusses the interaction of phthalates and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. Through the experiments on the toxic effects of dimethyl (o-) phthalate (DMP), diethyl (o-) phthalate (DEP), dibutyl (o-) phthalate (DBP) on ocean algae, the 50 % lethal concentration of the three substances in 48 h and 96 h for plaeodectylum tricornutum, platymonas sp, isochrysis galbana, and skeletonema costatum is obtained. Tolerance limits of the above ocean algae of DMP, DEP, and DBP are discussed.
基金support from the National Natural Science Foundation of China (42141003, 91851210, 41876119, 42188102, 91751207, and 91951207)the National Key Research and Development Program of China (2018YFA06055800 and 2020YFA0607600)+9 种基金support by the Korean Ministry of Oceans and Fisheries (20220558)the National Research Foundation of Korea (NRF-2018R1A2B2006340)support by the German Academic Exchange service (Deutscher Akademischer Austauschdienst, Make Our Planet Great Again-German Research Initiative, 57429828)the German Federal Ministry of Education and Researchsupport by the joint National Natural Science Foundation of China-Israel Science Foundation (NSFC-ISF) Research Program (42161144006 and 3511/21, respectively)support by the Russian Foundation for Basic Research (20-05-00381-a)the Russian Fundamental Programs of Pacific Oceanological Institute (01201363041 and 01201353055)supported by the following provincial and municipal authorities of China: Southern Marine Science and Engineering Guangdong Laboratory (K19313901) (Guangzhou)Southern Marine Science and Engineering Guangdong Laboratory (SML2020SP004) (Zhuhai)Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology (ZDSYS201802081843490)。
文摘The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been proposed to address this grand goal.One is to reduce anthropogenic CO2emissions to the atmosphere,and the other is to increase carbon sinks or negative emissions,i.e.,removing CO2from the atmosphere.Here we advocate eco-engineering approaches for ocean negative carbon emission(ONCE),aiming to enhance carbon sinks in the marine environment.An international program is being established to promote coordinated efforts in developing ONCE-relevant strategies and methodologies,taking into consideration ecological/biogeochemical processes and mechanisms related to different forms of carbon(inorganic/organic,biotic/abiotic,particulate/dissolved) for sequestration.We focus on marine ecosystem-based approaches and pay special attention to mechanisms that require transformative research,including those elucidating interactions between the biological pump(BP),the microbial carbon pump(MCP),and microbially induced carbonate precipitation(MICP).Eutrophic estuaries,hypoxic and anoxic waters,coral reef ecosystems,as well as aquaculture areas are particularly considered in the context of efforts to increase their capacity as carbon sinks.ONCE approaches are thus expected to be beneficial for both carbon sequestration and alleviation of environmental stresses.