The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was ...The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was also performed to explain possible effects. From particle size analysis and strength tests, it is hypothesized that the strength of the soil is increased with the addition of certain salinity concentrations until there are reversed effects, which is between 20 g/L and 50 g/L from our study. The increase of strength is suggested to be the affect of a greater variety of particle sizes. Since NaCI plays a role in the particle size distribution, it also plays a role in the strength of soils. The degree of the effect of the water content also differs from concentrations, and could be due to the variation of hydration film thickness on particles, which is affected by the ions introduced from water.展开更多
The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pr...The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pressure or electrical potential.Under the conditions of influent phosphate of 2.0 mg/L,counterion(Cl-)concentration of 0.1 mol/L,stirring speed of 500 r/min and phase temperature of 298 K,the removal of phosphate achieves 70.0%.Decreasing counterion concentration has little influence on the removal of phosphate,but phosphate amount in anion-exchange membrane increases significantly.With the increase of stirring speed and phase temperature,the removal efficiency of phosphate greatly is improved.Existing forms of phosphate in aqueous solution affected transport of phosphate and only strong acidic pH of feed solution(pH=3.0)decreases the removal of phosphate.Transport of phosphate is also accompanied by change of pH value of feed solution.In consequence,it might be a promise potential process for phosphate advanced wastewater treatment,especially in the area where high salted nature water can be utilized.展开更多
基金Acknowledgements: This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, SEM, China, and also supported by the United States National Science Foundation. The authors thank Prof. SHEN H. H. and Prof. SHEN H. T. from Clarkson University for their unconditional support to this work.
文摘The effect of NaCl on soil strength was investigated in this project based on salinity concentrations of 0 g/L, 5 g/L, 20 g/L, and 50 g/L as well as varying water contents of 15%-20%. Laser particle size analyzer was also performed to explain possible effects. From particle size analysis and strength tests, it is hypothesized that the strength of the soil is increased with the addition of certain salinity concentrations until there are reversed effects, which is between 20 g/L and 50 g/L from our study. The increase of strength is suggested to be the affect of a greater variety of particle sizes. Since NaCI plays a role in the particle size distribution, it also plays a role in the strength of soils. The degree of the effect of the water content also differs from concentrations, and could be due to the variation of hydration film thickness on particles, which is affected by the ions introduced from water.
基金Project(50778065)supported by the National Natural Science Foundation of China
文摘The removal of phosphate from aqueous solution by Donnan dialysis with anion-exchange membrane was investigated.The results show that phosphate could be removed from aqueous solution without supplying external high pressure or electrical potential.Under the conditions of influent phosphate of 2.0 mg/L,counterion(Cl-)concentration of 0.1 mol/L,stirring speed of 500 r/min and phase temperature of 298 K,the removal of phosphate achieves 70.0%.Decreasing counterion concentration has little influence on the removal of phosphate,but phosphate amount in anion-exchange membrane increases significantly.With the increase of stirring speed and phase temperature,the removal efficiency of phosphate greatly is improved.Existing forms of phosphate in aqueous solution affected transport of phosphate and only strong acidic pH of feed solution(pH=3.0)decreases the removal of phosphate.Transport of phosphate is also accompanied by change of pH value of feed solution.In consequence,it might be a promise potential process for phosphate advanced wastewater treatment,especially in the area where high salted nature water can be utilized.