Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge...Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and E1-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901:12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 μg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 μg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m^3 in 1974-1977; 356 125 ind./m^3 in 1989; 534 000 ind./m^3 in 1994-1995; from 965 000 to 1 452 000 ind./m^3 in 2006, and 595 000 ind./m^3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction ofMnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.展开更多
文摘Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and E1-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901:12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 μg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 μg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m^3 in 1974-1977; 356 125 ind./m^3 in 1989; 534 000 ind./m^3 in 1994-1995; from 965 000 to 1 452 000 ind./m^3 in 2006, and 595 000 ind./m^3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction ofMnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.