为了筛选出具有高胆盐水解酶活性的乳酸菌,以生鲜牛奶为样品,利用传统分离技术分离乳酸菌,并通过牛津杯法选出具有高胆盐水解酶活性的乳酸菌,进而采用16S r DNA测序技术对筛选菌株进行鉴定。同时,研究p H、紫外照射时间、温度、培养基...为了筛选出具有高胆盐水解酶活性的乳酸菌,以生鲜牛奶为样品,利用传统分离技术分离乳酸菌,并通过牛津杯法选出具有高胆盐水解酶活性的乳酸菌,进而采用16S r DNA测序技术对筛选菌株进行鉴定。同时,研究p H、紫外照射时间、温度、培养基盐浓度和培养基糖浓度对所筛选菌株胆盐水解酶活性的影响。实验中分离出2株具有高胆盐水解酶活性的植物乳杆菌,为菌株N1和N12,胆盐水解酶高活性的最适p H为7、最适温度为59℃。菌株N1最适糖质量分数与最适盐质量分数分别为10%和7%,菌株N12最适糖质量分数与最适盐质量分数分别为5%和4%。植物乳杆菌N1和N12具有高胆盐水解酶活性,具有降解人体血清胆固醇的潜力,可应用于降胆固醇产品的开发。展开更多
Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and ...Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.展开更多
Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth,...Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-t to 3.00 mol L-1 NaCI, but the most rapid growth was observed at 1.00molL-1NaC1, followed by 2.00 molL-l NaC1. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00molL-t NaC1, decreasing to 37.33% and 26.39% of those values, re- spectively, in the presence of 3.00 mol L-1 NaC1, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00molL-1 NaC1, followed by 1.00molL-1NaC1. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaC1 concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit (rbcL), and small subunit (rbcS), attained their highest abundances in the presence of 1.00 and 2.00molL-1 NaC1, respectively. The CA mRNA accumulation was induced from 0.44molL ~ to 3.00molL-1 NaC1, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaC1 stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaC1 in D. viridis.展开更多
Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N ...Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N supply is insufficient. We compared the remobilization of NO-3stored in the tissue and vacuolar between two rice(Oryza sativa L.) cultivars, Yangdao 6(YD6, indica)with a high N use efficiency(NUE) and Wuyujing 3(WYJ3, japonica) with a low NUE and measured the uptake of NO-3, expression of nitrate reductase(NR), NO-3transporter genes(NRTs), and NR activity after 4 d of N starvation following 7-d cultivation in a solution containing 2.86 mmol L-1NO-3. The results showed that both tissue NO-3concentration and vacuolar NO-3activity were higher in YD6 than WYJ3 under N starvation. YD6 showed a 2- to 3-fold higher expression of OsNRT2.1 in roots on the 1st and 4th day of N starvation and had significantly higher values of NO-3uptake(maximum uptake velocity, Vmax) than the cultivar WYJ3.Furthermore, YD6 had significantly higher leaf and root maximum NR activity(NRAmax) and actual NR activity(NRAact) as well as stronger root expression of the two NR genes after the 1st day of N starvation. There were no significant differences in NRAmax and NRAact between the two rice cultivars on the 4th day of N starvation. The results suggested that YD6 had stronger NRA under N starvation, which might result in better NO-3re-utilization from the vacuole, and higher capacity for NO-3uptake and use, potentially explaining the higher NUE of YD6 compared with WYJ3.展开更多
文摘为了筛选出具有高胆盐水解酶活性的乳酸菌,以生鲜牛奶为样品,利用传统分离技术分离乳酸菌,并通过牛津杯法选出具有高胆盐水解酶活性的乳酸菌,进而采用16S r DNA测序技术对筛选菌株进行鉴定。同时,研究p H、紫外照射时间、温度、培养基盐浓度和培养基糖浓度对所筛选菌株胆盐水解酶活性的影响。实验中分离出2株具有高胆盐水解酶活性的植物乳杆菌,为菌株N1和N12,胆盐水解酶高活性的最适p H为7、最适温度为59℃。菌株N1最适糖质量分数与最适盐质量分数分别为10%和7%,菌株N12最适糖质量分数与最适盐质量分数分别为5%和4%。植物乳杆菌N1和N12具有高胆盐水解酶活性,具有降解人体血清胆固醇的潜力,可应用于降胆固醇产品的开发。
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
基金funded by the Project of Science and Technology Innovation Team of Zhejiang Province (2010R50025-25)sponsored by the K. C. Wong Magna Fund
文摘Abstract Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaC1 stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-t to 3.00 mol L-1 NaCI, but the most rapid growth was observed at 1.00molL-1NaC1, followed by 2.00 molL-l NaC1. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00molL-t NaC1, decreasing to 37.33% and 26.39% of those values, re- spectively, in the presence of 3.00 mol L-1 NaC1, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00molL-1 NaC1, followed by 1.00molL-1NaC1. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaC1 concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit (rbcL), and small subunit (rbcS), attained their highest abundances in the presence of 1.00 and 2.00molL-1 NaC1, respectively. The CA mRNA accumulation was induced from 0.44molL ~ to 3.00molL-1 NaC1, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaC1 stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaC1 in D. viridis.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(No.200903001-5)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)of China+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK2010440)China Postdoctoral Science Foundation(No.20110491439)
文摘Ammonium(NH+4) is the main nitrogen(N) form for rice crops, while NH+4near the root surface can be oxidized to nitrate(NO-3)by NH+4-oxidizing bacteria. Nitrate can be accumulated within rice tissues and reused when N supply is insufficient. We compared the remobilization of NO-3stored in the tissue and vacuolar between two rice(Oryza sativa L.) cultivars, Yangdao 6(YD6, indica)with a high N use efficiency(NUE) and Wuyujing 3(WYJ3, japonica) with a low NUE and measured the uptake of NO-3, expression of nitrate reductase(NR), NO-3transporter genes(NRTs), and NR activity after 4 d of N starvation following 7-d cultivation in a solution containing 2.86 mmol L-1NO-3. The results showed that both tissue NO-3concentration and vacuolar NO-3activity were higher in YD6 than WYJ3 under N starvation. YD6 showed a 2- to 3-fold higher expression of OsNRT2.1 in roots on the 1st and 4th day of N starvation and had significantly higher values of NO-3uptake(maximum uptake velocity, Vmax) than the cultivar WYJ3.Furthermore, YD6 had significantly higher leaf and root maximum NR activity(NRAmax) and actual NR activity(NRAact) as well as stronger root expression of the two NR genes after the 1st day of N starvation. There were no significant differences in NRAmax and NRAact between the two rice cultivars on the 4th day of N starvation. The results suggested that YD6 had stronger NRA under N starvation, which might result in better NO-3re-utilization from the vacuole, and higher capacity for NO-3uptake and use, potentially explaining the higher NUE of YD6 compared with WYJ3.