Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the incre...Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions, and did not differ significantly among the three methods. Significant correlations were obtained among P fractions got by the three extraction methods. Dissolution continued until the end of the 90 day incubation period. At the end of the period, much of the applied phosphate recovered in both soils were in the Al and Fe P or in the hydroxide and bicarbonate extractable inorganic P fractions. The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution. The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution, namely low CEC, pH, P level, and base status; and high clay and free iron and aluminum oxide contents. The results suggested that KPR could be an alternative P source in the long, if not the short, term in the soils, provided that those factors influencing P availability in the soils are not limiting.展开更多
Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) i...Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) is a moderate to high salinity tolerant crop with low water and nutrient needs, seen as an alternative to grow in the water scarce regions. A three-year multifactorial study was conducted in southern Portugal to evaluate the combined effects of saline water and nitrogen application on the dry biomass (total, stems, and leaves), sugar content (total reducing sugars and sucrose eontents) and sugar yield (here defined as the product of total reducing sugars and stems dry biomass) functions of sweet sorghum. Sorghum dry biomass and sugar yield showed diminishing returns for each incremental change of nitrogen. The use of saline irrigation waters also led to yield reduction. Exception was sucrose content which increased with increasing levels of sodium in the soil. Nitrogen need decreased as the amount of sodium applied increased. Stem dry biomass, sucrose content, and sugar yield progressively increased with progress in the experiment. The effect could be attributed to the increase of the amount of irrigation applied throughout the years, thus increasing the leaching fraction which promoted salt leaching from the root zone, reduced the salinity stress, increased plant transpiration, nitrogen uptake and biomass yield.展开更多
Acid sulfate soils are normally not suitable for crop production unless they are appropriately ameliorated. An experiment was conducted in a glasshouse to enhance the growth of rice, variety MR219, planted on an acid ...Acid sulfate soils are normally not suitable for crop production unless they are appropriately ameliorated. An experiment was conducted in a glasshouse to enhance the growth of rice, variety MR219, planted on an acid sulfate soil using various soil amendments.The soil was collected from Semerak, Kelantan, Malaysia. Ground magnesium limestone(GML), bio-fertilizer, and basalt(each 4t ha-1) were added either alone or in combinations into the soil in pots 15 d before transplanting. Nitrogen, P and potash were applied at 150, 30, and 60 kg ha-1, respectively. Three seven-day-old rice seedlings were transplanted into each pot. The soil had a p H of 3.8 and contained organic C of 21 g kg-1, N of 1.2 g kg-1, available P of 192 mg kg-1, exchangeable K of 0.05 cmol c kg-1,and exchangeable Al of 4.30 cmol c kg-1, with low amounts of exchangeable Ca and Mg(0.60 and 0.70 cmol c kg-1). Bio-fertilizer treatment in combination with GML resulted in the highest p H of 5.4. The presence of high Al or Fe concentrations in the control soil without amendment severely affected the growth of rice. At 60 d of growth, higher plant heights, tiller numbers and leaf chlorophyll contents were obtained when the bio-fertilizer was applied individually or in combination with GML compared to the control. The presence of beneficial bacteria in bio-fertilizer might produce phytohormones and organic acids that could enhance plant growth and subsequently increase nutrient uptake by rice. Hence, it can be concluded that addition of bio-fertilizer and GML improved rice growth by increasing soil p H which consequently eliminated Al and/or Fe toxicity prevalent in the acid sulfate soil.展开更多
文摘Three phosphate extraction methods were used to investigate the dissolution, availability and transformation of Kunyang phosphate rock (KPR) in two surface acid soils. Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions, and did not differ significantly among the three methods. Significant correlations were obtained among P fractions got by the three extraction methods. Dissolution continued until the end of the 90 day incubation period. At the end of the period, much of the applied phosphate recovered in both soils were in the Al and Fe P or in the hydroxide and bicarbonate extractable inorganic P fractions. The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution. The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution, namely low CEC, pH, P level, and base status; and high clay and free iron and aluminum oxide contents. The results suggested that KPR could be an alternative P source in the long, if not the short, term in the soils, provided that those factors influencing P availability in the soils are not limiting.
基金Supported by the Foundation for Science and Technology (FCT) of Portugal (Nos. PTDC/AGR-AAM/66004/2006,SFRH/BD/ 60363/2009 and SFRH/BD/69185/2010)
文摘Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) is a moderate to high salinity tolerant crop with low water and nutrient needs, seen as an alternative to grow in the water scarce regions. A three-year multifactorial study was conducted in southern Portugal to evaluate the combined effects of saline water and nitrogen application on the dry biomass (total, stems, and leaves), sugar content (total reducing sugars and sucrose eontents) and sugar yield (here defined as the product of total reducing sugars and stems dry biomass) functions of sweet sorghum. Sorghum dry biomass and sugar yield showed diminishing returns for each incremental change of nitrogen. The use of saline irrigation waters also led to yield reduction. Exception was sucrose content which increased with increasing levels of sodium in the soil. Nitrogen need decreased as the amount of sodium applied increased. Stem dry biomass, sucrose content, and sugar yield progressively increased with progress in the experiment. The effect could be attributed to the increase of the amount of irrigation applied throughout the years, thus increasing the leaching fraction which promoted salt leaching from the root zone, reduced the salinity stress, increased plant transpiration, nitrogen uptake and biomass yield.
基金Supported by the Long-Term Research Grant Scheme(LRGS)Fund for Food Security from Ministry of Education,Malaysia(No.UPM/700-1/3/LRGS)
文摘Acid sulfate soils are normally not suitable for crop production unless they are appropriately ameliorated. An experiment was conducted in a glasshouse to enhance the growth of rice, variety MR219, planted on an acid sulfate soil using various soil amendments.The soil was collected from Semerak, Kelantan, Malaysia. Ground magnesium limestone(GML), bio-fertilizer, and basalt(each 4t ha-1) were added either alone or in combinations into the soil in pots 15 d before transplanting. Nitrogen, P and potash were applied at 150, 30, and 60 kg ha-1, respectively. Three seven-day-old rice seedlings were transplanted into each pot. The soil had a p H of 3.8 and contained organic C of 21 g kg-1, N of 1.2 g kg-1, available P of 192 mg kg-1, exchangeable K of 0.05 cmol c kg-1,and exchangeable Al of 4.30 cmol c kg-1, with low amounts of exchangeable Ca and Mg(0.60 and 0.70 cmol c kg-1). Bio-fertilizer treatment in combination with GML resulted in the highest p H of 5.4. The presence of high Al or Fe concentrations in the control soil without amendment severely affected the growth of rice. At 60 d of growth, higher plant heights, tiller numbers and leaf chlorophyll contents were obtained when the bio-fertilizer was applied individually or in combination with GML compared to the control. The presence of beneficial bacteria in bio-fertilizer might produce phytohormones and organic acids that could enhance plant growth and subsequently increase nutrient uptake by rice. Hence, it can be concluded that addition of bio-fertilizer and GML improved rice growth by increasing soil p H which consequently eliminated Al and/or Fe toxicity prevalent in the acid sulfate soil.