Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its ...Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.展开更多
Many lakes in Southeastern Wisconsin(the metropolitan-Milwaukee area) are gradually becoming increasingly "salty".While these waterbodies would not be considered presently to be saline lakes,there has been a...Many lakes in Southeastern Wisconsin(the metropolitan-Milwaukee area) are gradually becoming increasingly "salty".While these waterbodies would not be considered presently to be saline lakes,there has been a rapid increase in the chloride concentrations in most of these lakes over the last 30 years,with the lakes increasing from a mean chloride concentration of about 19 mg/L to over 100 mg/L in some cases.While ecological impacts can be expected when chloride values exceed 250 mg/L,the rate of increase presents a basis for concern,especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides.Thus,the origin of the chlorides is anthropogenic:human and industrial wastewaters(treatment of which has effected improvements in trophic status but has not affected other water-borne contaminants) and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region's waterways.Without taking remedial measures,the rate of salinization is expected to continue to increase,resulting,ultimately,in the alteration of the freshwater systems in the region.展开更多
基金Project(21576074)supported by the National Natural Science Foundation of China
文摘Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.
基金financial support of the organizing committee of the International Conference on Salt Lake Research which facilitated their attendance at the 12 th conference,held during July 2014 in Langfang near Beijing,China
文摘Many lakes in Southeastern Wisconsin(the metropolitan-Milwaukee area) are gradually becoming increasingly "salty".While these waterbodies would not be considered presently to be saline lakes,there has been a rapid increase in the chloride concentrations in most of these lakes over the last 30 years,with the lakes increasing from a mean chloride concentration of about 19 mg/L to over 100 mg/L in some cases.While ecological impacts can be expected when chloride values exceed 250 mg/L,the rate of increase presents a basis for concern,especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides.Thus,the origin of the chlorides is anthropogenic:human and industrial wastewaters(treatment of which has effected improvements in trophic status but has not affected other water-borne contaminants) and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region's waterways.Without taking remedial measures,the rate of salinization is expected to continue to increase,resulting,ultimately,in the alteration of the freshwater systems in the region.