大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储...大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储气压力高、安全稳定等优点,可以满足大规模先进绝热压缩空气储能的储气技术需求。文章首先介绍了盐穴储气技术的特点,进一步结合江苏金坛压缩空气储能国家示范项目,阐述了基于盐穴储气的先进绝热压缩空气储能系统(salt cavern advanced adiabatic compressed air energy storage,SC-AA-CAES)的工作原理,分析了系统的关键技术问题。最后,针对未来智能电网发展趋势,探讨了盐穴压缩空气储能技术的应用前景。展开更多
Owing to perfect impermeability,dynamics stability,flexible and efficient operation mode and strong adjustment,underground salt cavern natural gas storage is especially adapted to be used for short-term dispatch.Based...Owing to perfect impermeability,dynamics stability,flexible and efficient operation mode and strong adjustment,underground salt cavern natural gas storage is especially adapted to be used for short-term dispatch.Based on characteristics of gas flow and heat transfer,dynamic mathematic models were built to simulate the injection and withdrawal performance of underground salt cavern gas storage.Temperature and pressure variations of natural gas in gas storage were simulated on the basis of building models during withdrawal operation,and factors affecting on the operation of gas storage were also analyzed.Therefore,these models can provide theore-tic foundation and technology support for the design,building and operation of salt cavern gas storage.展开更多
文摘大规模压缩空气储能技术是实现电网削峰填谷,解决风电、光伏等波动性新能源并网消纳问题的有效手段。以高压容器为主的储气模式建设成本较高,限制了其装机容量和推广应用。盐穴储气具有建设成本低、占地面积小、技术成熟、密封性好、储气压力高、安全稳定等优点,可以满足大规模先进绝热压缩空气储能的储气技术需求。文章首先介绍了盐穴储气技术的特点,进一步结合江苏金坛压缩空气储能国家示范项目,阐述了基于盐穴储气的先进绝热压缩空气储能系统(salt cavern advanced adiabatic compressed air energy storage,SC-AA-CAES)的工作原理,分析了系统的关键技术问题。最后,针对未来智能电网发展趋势,探讨了盐穴压缩空气储能技术的应用前景。
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50676025)National Great Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China During the 11th Five-year Plan (Grand No.2006BAB03B09)
文摘Owing to perfect impermeability,dynamics stability,flexible and efficient operation mode and strong adjustment,underground salt cavern natural gas storage is especially adapted to be used for short-term dispatch.Based on characteristics of gas flow and heat transfer,dynamic mathematic models were built to simulate the injection and withdrawal performance of underground salt cavern gas storage.Temperature and pressure variations of natural gas in gas storage were simulated on the basis of building models during withdrawal operation,and factors affecting on the operation of gas storage were also analyzed.Therefore,these models can provide theore-tic foundation and technology support for the design,building and operation of salt cavern gas storage.