Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and fiel...Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and field cultivation). The attachment shape and distribution on the surface of stalk and leaf of G. soja plants were observed with scanning electron microscopy (SEM), and the ultrastructure of glandular hair with transmission electron microscopy (TEM). Na+ and Cl- contents in the secretion of the leaf surface and inside the leaf of G. soja subjected to different treatments were measured. The Na+ relative contents in glandular cells, epidermal cells and mesophyllous cells of leaves under different salinities were determined by X-ray microanalysis. Results show that only glandular and epidermal hair exist on the surface attachments of leaves and stalks of G. soja plants. These glandular hair were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface. The cell structure of the glandular hair showed the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmata and thicker cell walls, etc. The results of Na+ and Cl- contents in the leaf secretion and inside the leaf showed that the glandular hair executed the function of salt-secretion, and when treated with the salt gland inhibitor the salt-secretion process was inhibited. As a result, Na+ and Cl- were mainly accumulated inside G. soja leaves. The results of Na+ X-ray microanalysis under different salinities proved that the three cells of the glandular hair, especially the top cell, possessed strong competence for Na+ accumulation. Above all, the glandular hair were the salt gland, and no other kind of salt glands were found on G. soja plants. The secreting mechanism of the salt gland was also discussed.展开更多
The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaC...The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.展开更多
Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop,and its production is severely affected by saline soils.Therefore,the response of soybean seeds to salt stress during germination was investigated at both ph...Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop,and its production is severely affected by saline soils.Therefore,the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels.The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat.In both cultivars,the final germination percentage was not affected by salt,but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d,respectively,compared with controls.In response to salt stress,the abscisic acid content increased,and gibberellic acid (GA1+3) and isopentenyladenosine decreased.Indole-3-acetic acid increased in Lee68,but remained unchanged in N2899.The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE),followed by Coomassie brilliant blue G-250 staining.About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved,of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars.After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins,the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified.Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars.Glyceraldehyde 3-phosphate dehydrogenase,glutathione S-transferase (GST) 9,GST 10,and seed maturation protein PM36 were down-regulated in Lee68 by salt,but still remained at a certain level.However,these proteins were present in lower levels in control N2899 and were up-regulated under salt stress.The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination.展开更多
文摘Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and field cultivation). The attachment shape and distribution on the surface of stalk and leaf of G. soja plants were observed with scanning electron microscopy (SEM), and the ultrastructure of glandular hair with transmission electron microscopy (TEM). Na+ and Cl- contents in the secretion of the leaf surface and inside the leaf of G. soja subjected to different treatments were measured. The Na+ relative contents in glandular cells, epidermal cells and mesophyllous cells of leaves under different salinities were determined by X-ray microanalysis. Results show that only glandular and epidermal hair exist on the surface attachments of leaves and stalks of G. soja plants. These glandular hair were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface. The cell structure of the glandular hair showed the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmata and thicker cell walls, etc. The results of Na+ and Cl- contents in the leaf secretion and inside the leaf showed that the glandular hair executed the function of salt-secretion, and when treated with the salt gland inhibitor the salt-secretion process was inhibited. As a result, Na+ and Cl- were mainly accumulated inside G. soja leaves. The results of Na+ X-ray microanalysis under different salinities proved that the three cells of the glandular hair, especially the top cell, possessed strong competence for Na+ accumulation. Above all, the glandular hair were the salt gland, and no other kind of salt glands were found on G. soja plants. The secreting mechanism of the salt gland was also discussed.
文摘The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.
基金Project supported by the National Natural Science Foundation of China (No. 30800692)the National Basic Research Program (973) of China (Nos. 2010CB125906 and 2009CB118400)the National High-Tech R & D Program (863) of China (No. 2006AA10Z1C1)
文摘Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop,and its production is severely affected by saline soils.Therefore,the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels.The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat.In both cultivars,the final germination percentage was not affected by salt,but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d,respectively,compared with controls.In response to salt stress,the abscisic acid content increased,and gibberellic acid (GA1+3) and isopentenyladenosine decreased.Indole-3-acetic acid increased in Lee68,but remained unchanged in N2899.The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE),followed by Coomassie brilliant blue G-250 staining.About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved,of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars.After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins,the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified.Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars.Glyceraldehyde 3-phosphate dehydrogenase,glutathione S-transferase (GST) 9,GST 10,and seed maturation protein PM36 were down-regulated in Lee68 by salt,but still remained at a certain level.However,these proteins were present in lower levels in control N2899 and were up-regulated under salt stress.The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination.