The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from ...The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from the tungstate solution by magnesium salt precipitation were obtained. The results show that when the concentration of total magnesium increases from 0.01 mol/L to 1.0 mol/L, the optimal pH for the phosphorus removal by magnesium phosphate decreases from 9.8 to 8.8. The residual concentration of total phosphorus almost keeps the level of 4.0×10-6 mol/L in the system. MgHPO4, Mg3(PO4)2 and the mixture of Mg3(PO4)2 and Mg(OH)2 are stabilized in these system, respectively. However, increasing the total concentration of magnesium has little effect on phosphorus removal by magnesium ammonium phosphate, while it is helpful for phosphorus removal by increasing the total ammonia concentration. The calculated results demonstrate that the residual concentration of total phosphorus can decrease to 5.0×10-7 mol/L as the total concentration of ammonia reaches 5.0 mol/L and the optimal pH value is 9-10. Finally, verification experiments were conducted with home-made ammonium tungstate solution containing 50 g/L WO3 and 13 g/L P. The results show that when the dosage of MgCl2 is 1.1 times of the theoretical amount, the optimum pH for removing phosphorus is 9.5, which matches with the results of the theoretical calculation exactly.展开更多
The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and el...The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.展开更多
The reaction behaviors of silicate species in (NH4)2WO4-(NH4)2CO3-NH3-H2O system are crucial to developing a greenmanufacture technique for ammonium paratungstate. In order to efficiently remove silicon from the s...The reaction behaviors of silicate species in (NH4)2WO4-(NH4)2CO3-NH3-H2O system are crucial to developing a greenmanufacture technique for ammonium paratungstate. In order to efficiently remove silicon from the system, the reaction behaviors ofsilicate species were systematically investigated by thermodynamic analysis. The thermodynamic analysis shows that silicate in thetungstate clinker partly decomposes in the leaching process, with 150-160 mg/L silicon thermodynamically at 25 ℃. The dissolvedsilicon can be removed by magnesium salts via forming insoluble MgSiO3. The low carbonate and high ammonia concentrations inthe system are beneficial to the removal of silicon, with silicon concentration reaching 8-10 mg/L thermodynamically, whereasMgSiO3 precipitation is hardly formed when the concentration of total carbonate is more than 1.5 mol/L. The reaction behaviors ofcalcium and magnesium were also studied in the system. The results in the verification experiments consist with the theoreticalcalculation.展开更多
Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clari...Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.展开更多
基金Project(2012BAB10B04)supported by the National Key Technologies R&D Program of China
文摘The thermodynamic equilibrium diagrams of Mg2+- 3-4PO - +4NH -H2O system at 298 K were established based on the thermodynamic calculation. From the diagram, the thermodynamic conditions for removing phosphorus from the tungstate solution by magnesium salt precipitation were obtained. The results show that when the concentration of total magnesium increases from 0.01 mol/L to 1.0 mol/L, the optimal pH for the phosphorus removal by magnesium phosphate decreases from 9.8 to 8.8. The residual concentration of total phosphorus almost keeps the level of 4.0×10-6 mol/L in the system. MgHPO4, Mg3(PO4)2 and the mixture of Mg3(PO4)2 and Mg(OH)2 are stabilized in these system, respectively. However, increasing the total concentration of magnesium has little effect on phosphorus removal by magnesium ammonium phosphate, while it is helpful for phosphorus removal by increasing the total ammonia concentration. The calculated results demonstrate that the residual concentration of total phosphorus can decrease to 5.0×10-7 mol/L as the total concentration of ammonia reaches 5.0 mol/L and the optimal pH value is 9-10. Finally, verification experiments were conducted with home-made ammonium tungstate solution containing 50 g/L WO3 and 13 g/L P. The results show that when the dosage of MgCl2 is 1.1 times of the theoretical amount, the optimum pH for removing phosphorus is 9.5, which matches with the results of the theoretical calculation exactly.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(2009WK2007)supported by Key Project of Science and Technology Department of Hunan Province,ChinaProject(CX2009B133)supported by Colleges and Universities in Hunan Province Plans to Graduate Research and Innovation,China
文摘The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.
基金Project(51274243)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan of Central South University,China
文摘The reaction behaviors of silicate species in (NH4)2WO4-(NH4)2CO3-NH3-H2O system are crucial to developing a greenmanufacture technique for ammonium paratungstate. In order to efficiently remove silicon from the system, the reaction behaviors ofsilicate species were systematically investigated by thermodynamic analysis. The thermodynamic analysis shows that silicate in thetungstate clinker partly decomposes in the leaching process, with 150-160 mg/L silicon thermodynamically at 25 ℃. The dissolvedsilicon can be removed by magnesium salts via forming insoluble MgSiO3. The low carbonate and high ammonia concentrations inthe system are beneficial to the removal of silicon, with silicon concentration reaching 8-10 mg/L thermodynamically, whereasMgSiO3 precipitation is hardly formed when the concentration of total carbonate is more than 1.5 mol/L. The reaction behaviors ofcalcium and magnesium were also studied in the system. The results in the verification experiments consist with the theoreticalcalculation.
文摘Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.