Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning pr...Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.展开更多
Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology...Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concen- trations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.展开更多
基金Supported by the National Natural Science Foundation of China(61374137,61490701,61174119)the State Key Laboratory of Integrated Automation of Process Industry Technology and Research Center of National Metallurgical Automation Fundamental Research Funds(2013ZCX02-03)
文摘Fault detection and identification are challenging tasks in chemical processes, the aim of which is to decide out of control samples and find fault sensors timely and effectively. This paper develops a partitioning principal component analysis(PPCA) method for process monitoring. A variable reasoning strategy is proposed and applied to recognize multiple fault variables. Compared with traditional process monitoring methods, the PPCA strategy not only reflects the local behavior of process variation in each model(each direction of principal components),but also improves the monitoring performance through the combination of local monitoring results. Then, a variable reasoning strategy is introduced to locate fault variables. Unlike the contribution plot, this method locates normal and fault variables effectively, and gives initiatory judgment for ambiguous variables. Finally, the effectiveness of the proposed process monitoring and fault variable identification schemes is verified through a numerical example and TE chemical process.
文摘Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concen- trations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.