In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud e...In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud environment must be prepared to deal gracefully with huge data collections without compromising system performance.In this paper,we show that by using a concept of urgent data,our system can shorten the response time for most 'urgent' queries while guarantee lower bandwidth consumption.We argue that monitoring data can be treated differently.Some data capture critical system events;the arrival of these data will significantly influence the monitoring reaction speed which is called urgent data.High speed urgent data collections can help system to react in real time when facing fatal errors.A cloud environment in production,MagicCube,is used as a test bed.Extensive experiments over both real world and synthetic traces show that when using urgent data,monitoring system can lower the response latency compared with existing monitoring approaches.展开更多
This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management ...This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management of each plant and of the whole system. In the first part of this study, the features of the monitoring system that allows to monitor the operating parameters and to discover the issues before they actually become dangerous for the plant have been identified. The data collected in the different solar thermal systems realized in Italian jails have been analyzed. The results of these elaborations allowed us both to find out some anomalies of functioning of the plants, and to optimize the management of the whole plant in a more efficient way.展开更多
基金supported by the National Key Technology R&D Program(Grant NO. 2012BAH17F01)NSFC-NSF International Cooperation Project(Grant NO. 61361126011)
文摘In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud environment must be prepared to deal gracefully with huge data collections without compromising system performance.In this paper,we show that by using a concept of urgent data,our system can shorten the response time for most 'urgent' queries while guarantee lower bandwidth consumption.We argue that monitoring data can be treated differently.Some data capture critical system events;the arrival of these data will significantly influence the monitoring reaction speed which is called urgent data.High speed urgent data collections can help system to react in real time when facing fatal errors.A cloud environment in production,MagicCube,is used as a test bed.Extensive experiments over both real world and synthetic traces show that when using urgent data,monitoring system can lower the response latency compared with existing monitoring approaches.
文摘This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management of each plant and of the whole system. In the first part of this study, the features of the monitoring system that allows to monitor the operating parameters and to discover the issues before they actually become dangerous for the plant have been identified. The data collected in the different solar thermal systems realized in Italian jails have been analyzed. The results of these elaborations allowed us both to find out some anomalies of functioning of the plants, and to optimize the management of the whole plant in a more efficient way.