为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将...为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将距离相近的特征点映射成相同的哈希码,每一个哈希码代表聚类中心,构成视觉词典。最后,利用生成的视觉词典,将图像表示为直方图向量,并应用于图像分类。在标准数据集上的实验结果表明,该模型生成的视觉词典具有较好的区分度,有效地提高了图像分类的精度和效率。展开更多
文摘为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将距离相近的特征点映射成相同的哈希码,每一个哈希码代表聚类中心,构成视觉词典。最后,利用生成的视觉词典,将图像表示为直方图向量,并应用于图像分类。在标准数据集上的实验结果表明,该模型生成的视觉词典具有较好的区分度,有效地提高了图像分类的精度和效率。