期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络和监督核哈希的图像检索方法 被引量:36
1
作者 柯圣财 赵永威 +1 位作者 李弼程 彭天强 《电子学报》 EI CAS CSCD 北大核心 2017年第1期157-163,共7页
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利... 当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在Image Net-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法. 展开更多
关键词 深度学习 图像检索 卷积神经网络 近似近邻检索 监督核哈希
下载PDF
基于监督核哈希生成视觉词袋模型的图像分类
2
作者 刘相利 郭海儒 +1 位作者 曲宏山 黄强强 《测控技术》 CSCD 2018年第3期6-9,共4页
为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将... 为了解决大规模数据集下传统视觉词袋模型生成时间长、内存消耗大且分类精度低等问题,提出了基于监督核哈希(Supervised Hashing with Kernels,KSH)的视觉词袋模型。首先,提取图像的SIFT特征点,构造特征点样本集。然后,学习KSH函数,将距离相近的特征点映射成相同的哈希码,每一个哈希码代表聚类中心,构成视觉词典。最后,利用生成的视觉词典,将图像表示为直方图向量,并应用于图像分类。在标准数据集上的实验结果表明,该模型生成的视觉词典具有较好的区分度,有效地提高了图像分类的精度和效率。 展开更多
关键词 监督核哈希 视觉词袋 视觉词典 图像分类
下载PDF
CF患者肺组织分类——基于相关反馈的监督核哈希方法
3
作者 申华磊 邱鹏 《河南师范大学学报(自然科学版)》 CAS 北大核心 2019年第4期24-30,共7页
现有的哈希方法用于CF患者肺组织分类时没有从正负反馈样本挖掘判别信息,分类精度不高.为此,提出一种基于相关反馈的监督核哈希方法.首先,对肺组织进行监督核哈希学习,得到初始哈希函数;其次,使用该初始哈希函数对肺组织进行哈希编码和... 现有的哈希方法用于CF患者肺组织分类时没有从正负反馈样本挖掘判别信息,分类精度不高.为此,提出一种基于相关反馈的监督核哈希方法.首先,对肺组织进行监督核哈希学习,得到初始哈希函数;其次,使用该初始哈希函数对肺组织进行哈希编码和分类,并得到正负反馈样本;接着,基于正负反馈样本构建新的哈希函数;最后,使用新构建的哈希函数对肺组织再次进行哈希编码和分类.实验结果表明,同现有方法相比,所提出的方法显著提高了CF患者肺组织的分类精度. 展开更多
关键词 相关反馈 监督核哈希 肺组织分类 CT影像
下载PDF
面向遥感图像检索的级联池化自注意力研究 被引量:3
4
作者 吴刚 葛芸 +1 位作者 储珺 叶发茂 《光电工程》 CAS CSCD 北大核心 2022年第12期53-65,共13页
高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力... 高分辨率遥感图像检索中,由于图像内容复杂,细节信息丰富,以致通过卷积神经网络提取的特征难以有效表达图像的显著信息。针对该问题,提出一种基于级联池化的自注意力模块,用来提高卷积神经网络的特征表达。首先,设计了级联池化自注意力模块,自注意力在建立语义依赖关系的基础上,可以学习图像关键的显著特征,级联池化是在小区域最大池化的基础上再进行均值池化,将其用于自注意力模块,能够在关注图像显著信息的同时保留图像重要的细节信息,进而增强特征的判别能力。然后,将级联池化自注意力模块嵌入到卷积神经网络中,进行特征的优化和提取。最后,为了进一步提高检索效率,采用监督核哈希对提取的特征进行降维,并将得到的低维哈希码用于遥感图像检索。在UC Merced、AID和NWPU-RESISC45数据集上的实验结果表明,本文方法能够有效提高检索性能。 展开更多
关键词 遥感图像检索 级联池化 自注意力模块 监督核哈希 卷积神经网络
下载PDF
密集网络图像哈希检索
5
作者 王亚鸽 康晓东 +3 位作者 郭军 李博 张华丽 刘汉卿 《中国图象图形学报》 CSCD 北大核心 2020年第5期900-912,共13页
目的 为提取可充分表达图像语义信息的图像特征,减少哈希检索中的投影误差,并生成更紧致的二值哈希码,提出一种基于密集网络和改进的监督核哈希方法.方法 用训练优化好的密集网络提取图像的高层语义特征;先对提取到的图像特征进行核主... 目的 为提取可充分表达图像语义信息的图像特征,减少哈希检索中的投影误差,并生成更紧致的二值哈希码,提出一种基于密集网络和改进的监督核哈希方法.方法 用训练优化好的密集网络提取图像的高层语义特征;先对提取到的图像特征进行核主成分分析投影,充分挖掘图像特征中隐含的非线性信息,以减少投影误差,再利用监督核哈希方法对图像特征进行监督学习,将特征映射到汉明空间,生成更紧致的二值哈希码.结果 为验证提出方法的有效性、可拓展性以及高效性,在Paris6K和LUNA16(lung nodule analysis 16)数据集上与其他6种常用哈希方法相比,所提方法在不同哈希码长下的平均检索精度均较高,且在哈希码长为64 bit时,平均检索精度达到最高,分别为89.2%和92.9%;与基于卷积神经网络的哈希算法(convolution neural network Hashing,CNNH)方法相比,所提方法的时间复杂度有所降低.结论 提出一种基于密集网络和改进的监督核哈希方法,提高了图像特征的表达能力和投影精度,具有较好的检索性能和较低的时间复杂度;且所提方法的可拓展性也较好,不仅能够有效应用到彩色图像检索领域,也可以应用在医学灰度图像检索领域. 展开更多
关键词 密集卷积网络(DenseNet) 监督核哈希 图像特征 投影误差 主成分分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部