期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SKLLE和SVM的人脸表情识别 被引量:10
1
作者 晏勇 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期55-60,共6页
为有效提取人脸表情图像特征并降低特征向量维数,该文提出一种基于监督核局部线性嵌入(Supervised Kernel Locally Linear Embedding,SKLLE)和支持向量机(Support Vector Machine,SVM)相结合的降维和分类方法.利用人脸表情图像数据本身... 为有效提取人脸表情图像特征并降低特征向量维数,该文提出一种基于监督核局部线性嵌入(Supervised Kernel Locally Linear Embedding,SKLLE)和支持向量机(Support Vector Machine,SVM)相结合的降维和分类方法.利用人脸表情图像数据本身的非线性流形结构信息和标签信息实现维数约简,提取低维嵌入特征用于人脸表情识别,采用支持向量机代替传统的K近邻分类器.基于JAFFE人脸表情图像库和Cohn-Kanade人脸表情数据库的实验结果表明,该方法可以很好地实现维数约简,达到较高的识别率,有效地提高了人脸表情识别的性能. 展开更多
关键词 人脸表情识别 流形学习 局部线性嵌入 监督核局部线性嵌入 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部