期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于离散度平衡的降维算法 被引量:3
1
作者 王辉兵 冯林 吴振宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第6期995-1002,共8页
已有的监督维数约简算法大都通过最大化类间离散度总和等相关手段选取判别能力较强的子空间,使得原始空间中距离较小的一些类易被忽略而在子空间中出现不同类的融合现象.为此,提出一种基于离散度平衡的降维算法——离散度平衡投影.该算... 已有的监督维数约简算法大都通过最大化类间离散度总和等相关手段选取判别能力较强的子空间,使得原始空间中距离较小的一些类易被忽略而在子空间中出现不同类的融合现象.为此,提出一种基于离散度平衡的降维算法——离散度平衡投影.该算法利用对称相对熵来衡量样本间的离散度,将对称相对熵与离散度平衡的概念结合,使得算法在降维过程中保持较大类间离散度的同时更加注重较小的类间离散度,以实现类间散度平衡的目的;为了充分使用现实生活中大量无标签样本,通过保持所有样本间拉普拉斯图结构进一步提出了半监督离散度平衡投影.对Soybean,Isolet,COIL20等标准数据集进行维数约简的实验结果表明,文中算法具有较好的降维效果. 展开更多
关键词 监督维数约简 离散度平衡 相对熵 监督
下载PDF
基于子空间类标传播和正则判别分析的单标记图像人脸识别 被引量:6
2
作者 殷飞 焦李成 杨淑媛 《电子与信息学报》 EI CSCD 北大核心 2014年第3期610-616,共7页
针对单标记图像人脸识别问题,该文提出一种基于子空间类标传播和正则判别分析的半监督维数约简方法。首先,基于子空间假设设计了一种类标传播方法,将类标信息传播到无类标样本上。然后,在传播得到的带类标数据集上使用正则判别分析对数... 针对单标记图像人脸识别问题,该文提出一种基于子空间类标传播和正则判别分析的半监督维数约简方法。首先,基于子空间假设设计了一种类标传播方法,将类标信息传播到无类标样本上。然后,在传播得到的带类标数据集上使用正则判别分析对数据进行维数约简。最后,在低维空间使用最近邻方法对测试人脸完成识别。在3个公共人脸数据库CMU PIE,Extended Yale B和AR上的实验,验证了该方法的可行性和有效性。 展开更多
关键词 人脸识别 子空间假设 类标传播 正则判别分析 监督维数约简
下载PDF
SELF-DEPENDENT LOCALITY PRESERVING PROJECTION WITH TRANSFORMED SPACE-ORIENTED NEIGHBORHOOD GRAPH
3
作者 乔立山 张丽梅 孙忠贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期261-268,共8页
Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in da... Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results. 展开更多
关键词 graphic methods Laplacian transforms unsupervised learning dimensionality reduction locality preserving projection
下载PDF
Speech emotion recognition using semi-supervised discriminant analysis
4
作者 徐新洲 黄程韦 +2 位作者 金赟 吴尘 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期7-12,共6页
Semi-supervised discriminant analysis SDA which uses a combination of multiple embedding graphs and kernel SDA KSDA are adopted in supervised speech emotion recognition.When the emotional factors of speech signal samp... Semi-supervised discriminant analysis SDA which uses a combination of multiple embedding graphs and kernel SDA KSDA are adopted in supervised speech emotion recognition.When the emotional factors of speech signal samples are preprocessed different categories of features including pitch zero-cross rate energy durance formant and Mel frequency cepstrum coefficient MFCC as well as their statistical parameters are extracted from the utterances of samples.In the dimensionality reduction stage before the feature vectors are sent into classifiers parameter-optimized SDA and KSDA are performed to reduce dimensionality.Experiments on the Berlin speech emotion database show that SDA for supervised speech emotion recognition outperforms some other state-of-the-art dimensionality reduction methods based on spectral graph learning such as linear discriminant analysis LDA locality preserving projections LPP marginal Fisher analysis MFA etc. when multi-class support vector machine SVM classifiers are used.Additionally KSDA can achieve better recognition performance based on kernelized data mapping compared with the above methods including SDA. 展开更多
关键词 speech emotion RECOGNITION speech emotion feature semi-supervised discriminant analysis dimensionality reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部