The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monito...The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.展开更多
High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa...High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.展开更多
Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard...Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process. An adaptive SPC scheme is developed, which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable. The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line. An example is provided to illustrate the proposed adaptive SPC design approach.展开更多
Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in thi...Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in this paper, a distributed real-time auto- surveillance system is presented. The freeway traffic videos are taken as input video from Pan Tilt Zoom (PTZ) camera, and then produces an analysis of the states and activity of the vehicles in the region of interested (ROI), if there is any abnormal instance, an alarm and corresponding traffic video are sent to awake surveillants by Ethernet. To achieve this functionality, our system relies on three main procedures. The first one initializes the system. It detects the ROI of the scene, and performs the camera calibration to remove the perspective effect of the incoming image. The second one segments moving vehicles from the images, eliminate shadow and tracks them real-time. It uses a set of methods to obtain the background of the image, extracts the moving regions and tracks these moving regions by matching them between frames of the video sequence to obtain high-level information such as color, size, velocity, and trajectories of moving vehicles. In the third procedure, activities of vehicles are analyzed based on a series of preset situations which would happen on freeway. The detail information of each vehicle and the global statistical information are checked to find out any abnormal instance, and then triggered an alarm. We present details of the system, together with experiment results which demonstrate the accuracy and time responses.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303094)International Science and Technology Cooperation Project of China(2012DFA31120)National Key Technology Research and Development Program(2012BAD14B15)
文摘The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.
文摘High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.
基金the National Natural Science Foundation of China (50405016 70671065).
文摘Automatic process control (APC) based on design of experiment (DOE) is a cost-efficient approach for variation reduction. The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process. An adaptive SPC scheme is developed, which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable. The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line. An example is provided to illustrate the proposed adaptive SPC design approach.
文摘Video based surveillance systems have been widely used on freeway for traffic monitoring, as the cameras can provide the most intuitionistic information. In order to manage all the traffic videos automatically, in this paper, a distributed real-time auto- surveillance system is presented. The freeway traffic videos are taken as input video from Pan Tilt Zoom (PTZ) camera, and then produces an analysis of the states and activity of the vehicles in the region of interested (ROI), if there is any abnormal instance, an alarm and corresponding traffic video are sent to awake surveillants by Ethernet. To achieve this functionality, our system relies on three main procedures. The first one initializes the system. It detects the ROI of the scene, and performs the camera calibration to remove the perspective effect of the incoming image. The second one segments moving vehicles from the images, eliminate shadow and tracks them real-time. It uses a set of methods to obtain the background of the image, extracts the moving regions and tracks these moving regions by matching them between frames of the video sequence to obtain high-level information such as color, size, velocity, and trajectories of moving vehicles. In the third procedure, activities of vehicles are analyzed based on a series of preset situations which would happen on freeway. The detail information of each vehicle and the global statistical information are checked to find out any abnormal instance, and then triggered an alarm. We present details of the system, together with experiment results which demonstrate the accuracy and time responses.