针对间歇生产过程存在的多阶段问题,提出了基于数据动态特性CPV(1)(cumulative percent variance of the first principal component)指标进行模糊聚类实现多阶段软划分的方法,解决了传统分段方式对间歇过程进行硬划分的缺陷,使得过程...针对间歇生产过程存在的多阶段问题,提出了基于数据动态特性CPV(1)(cumulative percent variance of the first principal component)指标进行模糊聚类实现多阶段软划分的方法,解决了传统分段方式对间歇过程进行硬划分的缺陷,使得过程多阶段划分更加准确。在此基础上建立多阶段具有时变主元协方差的改进MPCA(multiway principal component analysis)模型进行间歇过程的监视。将此方法应用于青霉素发酵过程,验证了该方法的可靠度和有效性。展开更多
文摘针对间歇生产过程存在的多阶段问题,提出了基于数据动态特性CPV(1)(cumulative percent variance of the first principal component)指标进行模糊聚类实现多阶段软划分的方法,解决了传统分段方式对间歇过程进行硬划分的缺陷,使得过程多阶段划分更加准确。在此基础上建立多阶段具有时变主元协方差的改进MPCA(multiway principal component analysis)模型进行间歇过程的监视。将此方法应用于青霉素发酵过程,验证了该方法的可靠度和有效性。