针对低信噪比下盖氏圆估计(Gerschgorin disk estimator,GDE)方法难以有效估计信号源数目的情况,通过将峰均功率比(peak-to-average power ratio,PAR)与盖氏圆半径相结合,提出基于峰均功率比的盖氏圆估计(Gerschgorin disk estimator ba...针对低信噪比下盖氏圆估计(Gerschgorin disk estimator,GDE)方法难以有效估计信号源数目的情况,通过将峰均功率比(peak-to-average power ratio,PAR)与盖氏圆半径相结合,提出基于峰均功率比的盖氏圆估计(Gerschgorin disk estimator based on peak-to-average power ratio,GDE-PAR)方法.从阵元接收数据中提取出特征向量,再用特征向量加权接收数据,得到峰均功率比用于修正对应的盖氏圆半径,用GDE方法判定信号源数目.在不同信噪比条件下对修正前后的盖氏圆半径进行Matlab仿真,并使用蒙特卡罗方法对不同信噪比、等强双目标与不等强双目标和等强3目标与不等强3目标情况下,Akaike信息论准则(Akaike information criterion,AIC)、最小描述长度(minimum description length,MDL)准则、PAR方法和GDE-PAR方法进行信号源估计.结果表明,在低信噪比及不等强多目标条件下,GDE-PAR方法成功检测到信源的概率均比AIC、MDL准则和PAR方法大.展开更多
为了减少盖氏圆准则信源数估计算法的运算量并且提高信源数估计的精度,根据噪声空间与阵列导向矩阵的正交性原理,设计了基于特征空间的信源数估计算法(Estimator Based on Eigenvectors,EBE).EBE构造时空相关矩阵,利用色噪声在时间上相...为了减少盖氏圆准则信源数估计算法的运算量并且提高信源数估计的精度,根据噪声空间与阵列导向矩阵的正交性原理,设计了基于特征空间的信源数估计算法(Estimator Based on Eigenvectors,EBE).EBE构造时空相关矩阵,利用色噪声在时间上相关性比较弱的特点,实现对空间色噪声的抑制.在空间白噪声环境下和空间色噪声环境下测试了EBE信源数估计的性能并且与传统的盖氏圆准则和其它色噪声类信源数估计的一些算法比较,证明了EBE在空间白噪声和空间色噪声环境下的有效性.EBE不仅节省了盖氏圆准则信源数估计中一次特征分解的运算量,并且同时提高了信源数估计的性能.展开更多
本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字...本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字长法(Minimum Dscription Lengh,MDL).基于信息理论标准(ITC)的MDL方法在低SNR条件下获得比GDE更好的性能,但是它无法处理包含有色噪声的信号.GDE方法虽然可以克服有色噪声的影响,但是其在低SNR下的性能欠佳.基于上述考虑,本文对这两种方法进行了改进.采用对角加载技术改善MDL方法的性能,并引入Jackknife切法优化数据协方差矩阵,以提高GDE方法的性能.模拟实验结果表明:本文提出的方法使原有方法的性能得到很大改善.展开更多
为了改善在小快拍情况下盖氏圆准则信源数估计算法的估计性能,提出了一种基于模糊聚类的信源数估计算法(Fuzzy Clustering Based Estimator-FCBE)。基于模糊聚类的信源数估计算法使用了待分类对象(特征向量)隶属于信号子空间的隶属函数...为了改善在小快拍情况下盖氏圆准则信源数估计算法的估计性能,提出了一种基于模糊聚类的信源数估计算法(Fuzzy Clustering Based Estimator-FCBE)。基于模糊聚类的信源数估计算法使用了待分类对象(特征向量)隶属于信号子空间的隶属函数值作为分类的特征,实际上引入了从对象参数到分类特征的一次映射,符合阵列信号处理中信源数估计的实际情况。通过仿真实验比较了基于模糊聚类的信源数估计算法和盖氏圆准则在小快拍下的估计性能,并且在浅水高分辨率测深侧扫声纳中的实际应用验证了基于模糊聚类的信源数估计算法的有效性。展开更多
文摘针对低信噪比下盖氏圆估计(Gerschgorin disk estimator,GDE)方法难以有效估计信号源数目的情况,通过将峰均功率比(peak-to-average power ratio,PAR)与盖氏圆半径相结合,提出基于峰均功率比的盖氏圆估计(Gerschgorin disk estimator based on peak-to-average power ratio,GDE-PAR)方法.从阵元接收数据中提取出特征向量,再用特征向量加权接收数据,得到峰均功率比用于修正对应的盖氏圆半径,用GDE方法判定信号源数目.在不同信噪比条件下对修正前后的盖氏圆半径进行Matlab仿真,并使用蒙特卡罗方法对不同信噪比、等强双目标与不等强双目标和等强3目标与不等强3目标情况下,Akaike信息论准则(Akaike information criterion,AIC)、最小描述长度(minimum description length,MDL)准则、PAR方法和GDE-PAR方法进行信号源估计.结果表明,在低信噪比及不等强多目标条件下,GDE-PAR方法成功检测到信源的概率均比AIC、MDL准则和PAR方法大.
文摘为了减少盖氏圆准则信源数估计算法的运算量并且提高信源数估计的精度,根据噪声空间与阵列导向矩阵的正交性原理,设计了基于特征空间的信源数估计算法(Estimator Based on Eigenvectors,EBE).EBE构造时空相关矩阵,利用色噪声在时间上相关性比较弱的特点,实现对空间色噪声的抑制.在空间白噪声环境下和空间色噪声环境下测试了EBE信源数估计的性能并且与传统的盖氏圆准则和其它色噪声类信源数估计的一些算法比较,证明了EBE在空间白噪声和空间色噪声环境下的有效性.EBE不仅节省了盖氏圆准则信源数估计中一次特征分解的运算量,并且同时提高了信源数估计的性能.
文摘本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字长法(Minimum Dscription Lengh,MDL).基于信息理论标准(ITC)的MDL方法在低SNR条件下获得比GDE更好的性能,但是它无法处理包含有色噪声的信号.GDE方法虽然可以克服有色噪声的影响,但是其在低SNR下的性能欠佳.基于上述考虑,本文对这两种方法进行了改进.采用对角加载技术改善MDL方法的性能,并引入Jackknife切法优化数据协方差矩阵,以提高GDE方法的性能.模拟实验结果表明:本文提出的方法使原有方法的性能得到很大改善.
文摘为了改善在小快拍情况下盖氏圆准则信源数估计算法的估计性能,提出了一种基于模糊聚类的信源数估计算法(Fuzzy Clustering Based Estimator-FCBE)。基于模糊聚类的信源数估计算法使用了待分类对象(特征向量)隶属于信号子空间的隶属函数值作为分类的特征,实际上引入了从对象参数到分类特征的一次映射,符合阵列信号处理中信源数估计的实际情况。通过仿真实验比较了基于模糊聚类的信源数估计算法和盖氏圆准则在小快拍下的估计性能,并且在浅水高分辨率测深侧扫声纳中的实际应用验证了基于模糊聚类的信源数估计算法的有效性。