针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域...针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域生成网络(region proposal network,RPN)获取的提议区域(region of interest,ROI)体素化处理,同时构建不同尺度的区域金字塔来捕获更加广泛的兴趣点;加入点云Transformer模块来增强对网格中心点局部特征的学习;在网络中加入球查询半径预测模块,使得模型可以根据点云密度自适应调整球查询的范围。最后,对所提算法的有效性进行了试验验证,在KITTI数据集下对模型的性能进行评估测试,同时设计相应的消融试验验证模型中各模块的有效性。展开更多
针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max poolin...针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。展开更多
目标高分辨一维距离像(High Resolution Range Profile,HRRP)中包含了丰富的目标尺寸、结构等目标特征,是进行空间目标身份识别的有效途径。但由于卫星宽带雷达实测数据获取难度大,前期相关研究多集中于基于HRRP的目标识别算法,结论也...目标高分辨一维距离像(High Resolution Range Profile,HRRP)中包含了丰富的目标尺寸、结构等目标特征,是进行空间目标身份识别的有效途径。但由于卫星宽带雷达实测数据获取难度大,前期相关研究多集中于基于HRRP的目标识别算法,结论也多是基于仿真数据和少量类别(几类)的前提下得到的,与工程应用实际情况有较大差距,工程指导意义有限。为解决这一问题,基于地基雷达获取的30类卫星目标的大量一维距离像实测数据,从识别正确率的角度对目标HRRP及其特征(组合)的可分性和在空间目标个体识别中的应用效果进行了量化分析,分析结果可为后续基于HRRP的空间目标个体识别技术研究和工程应用提供可靠依据。展开更多
文摘针对现有三维目标检测算法对存在遮挡及距离较远目标检测效果差的问题,以基于点云的三维目标检测算法(3D object proposal generation and detection from point cloud,PointRCNN)为基础,对网络进行改进,提高三维目标检测精度。对区域生成网络(region proposal network,RPN)获取的提议区域(region of interest,ROI)体素化处理,同时构建不同尺度的区域金字塔来捕获更加广泛的兴趣点;加入点云Transformer模块来增强对网格中心点局部特征的学习;在网络中加入球查询半径预测模块,使得模型可以根据点云密度自适应调整球查询的范围。最后,对所提算法的有效性进行了试验验证,在KITTI数据集下对模型的性能进行评估测试,同时设计相应的消融试验验证模型中各模块的有效性。
文摘针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。
文摘目标高分辨一维距离像(High Resolution Range Profile,HRRP)中包含了丰富的目标尺寸、结构等目标特征,是进行空间目标身份识别的有效途径。但由于卫星宽带雷达实测数据获取难度大,前期相关研究多集中于基于HRRP的目标识别算法,结论也多是基于仿真数据和少量类别(几类)的前提下得到的,与工程应用实际情况有较大差距,工程指导意义有限。为解决这一问题,基于地基雷达获取的30类卫星目标的大量一维距离像实测数据,从识别正确率的角度对目标HRRP及其特征(组合)的可分性和在空间目标个体识别中的应用效果进行了量化分析,分析结果可为后续基于HRRP的空间目标个体识别技术研究和工程应用提供可靠依据。