为从不同角度识别目标物体以及解决左右两幅图像中目标轮廓中心不匹配的问题,将SURF(Speeded Up Robust Features)算法与Grab Cut算法相结合,离线采集目标物体不同角度的图像,生成目标模板图片库。利用SURF算法完成目标物体的识别;利用S...为从不同角度识别目标物体以及解决左右两幅图像中目标轮廓中心不匹配的问题,将SURF(Speeded Up Robust Features)算法与Grab Cut算法相结合,离线采集目标物体不同角度的图像,生成目标模板图片库。利用SURF算法完成目标物体的识别;利用SURF算法自动初始化Grab Cut算法,实现目标轮廓的提取;利用基于灰度相关的区域匹配算法完成目标轮廓中心点的匹配,结合三维重建原理实现目标定位。实验结果表明,该方法可以成功识别目标物体并对目标物体进行准确定位。展开更多
给出一种双目视觉系统结合SURF(Speeded Up Robust Feature)特征的目标识别与定位方法,分析了采用SURF特征实现目标识别的方法,利用双目视觉的原理求取识别出的目标物体的三维坐标信息,从而实现目标物体的识别与定位,与传统的基于SIFT(S...给出一种双目视觉系统结合SURF(Speeded Up Robust Feature)特征的目标识别与定位方法,分析了采用SURF特征实现目标识别的方法,利用双目视觉的原理求取识别出的目标物体的三维坐标信息,从而实现目标物体的识别与定位,与传统的基于SIFT(Scale Invariant Feature Transform)特征或基于颜色形状特征的目标识别与定位方法相比,该方法更具有鲁棒性和实时性.实验结果证明了该方法进行目标识别与定位的可行性,具有一定的应用价值.展开更多
为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识...为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识别和定位,对输出的识别结果与定位框采用类别激活网络(Class Activation,CA)去除边界框,运用像素点来标注目标位置.实验结果表明,该算法具有较高的识别与定位精度,可用于水面漂浮物识别和定位.此外,该算法对于其他与水面漂浮物具有相似特征的小目标物体定位有一定的借鉴作用.展开更多
文摘为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识别和定位,对输出的识别结果与定位框采用类别激活网络(Class Activation,CA)去除边界框,运用像素点来标注目标位置.实验结果表明,该算法具有较高的识别与定位精度,可用于水面漂浮物识别和定位.此外,该算法对于其他与水面漂浮物具有相似特征的小目标物体定位有一定的借鉴作用.