期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CDMA20001x无线运营网络目标利用率分析研究
1
作者 邱涌泉 李韶英 《广东通信技术》 2012年第6期14-16,39,共4页
无线网络利用率是评估CDMA20001x移动网络资源使用效率的关键指标,指标要求高低直接影响网络资源投入与网络质量等指标,如何确定无线网络利用率指标要求是CDMA网络运营商需重点研究的问题。将对CDMA20001x目标网络利用率评估方法进行研... 无线网络利用率是评估CDMA20001x移动网络资源使用效率的关键指标,指标要求高低直接影响网络资源投入与网络质量等指标,如何确定无线网络利用率指标要求是CDMA网络运营商需重点研究的问题。将对CDMA20001x目标网络利用率评估方法进行研究分析,为制定合理的网络利用率指标要求提供参考。 展开更多
关键词 CDMA20001X 目标利用率 网络资源投入 网络质量
下载PDF
单兵种取舍与多兵种综合取舍目标资源分析
2
作者 丁志宏 刘宇驰 《合肥炮兵学院学报》 1998年第2期1-4,共4页
本文采用定性与定量分析方法,对传统指挥方式和火力协调方式下目标资源的利用率进行了比较,得出的结论表明,合成军队采用火力协调体制,有利于增强诸军兵种火力整体打击威力。
关键词 火力协调 目标资源 目标利用率 炮兵 合同战术
全文增补中
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
3
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部