A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimiz...A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.展开更多
The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emer...The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.展开更多
基金Supported by the National Natural Science Foundation of China(21376188,21676211)
文摘A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.
文摘The fact of proportional population growth in many countries drags the attention of researchers in the field of crowd dynamics to the need for developing reliable models to predict the behavior of human crowds in emergency situations such as evacuation processes. Computer based models that simulate human crowd dynamics prove to offer the optimum way to predict the crowd realistic behavior especially in emergency situations. This paper presents a vital extension of my previous work in which an individual-based model to simulate the behavior of human crowd was developed using the artificial potential fields to describe the interaction forces between each crowd member and the environment on one side and amongst the crowd members on the other side to add realistic flavor to the predicted crowd behavior. In this paper, the successive multi-goals (SMG) method, which is a new method to represent the environment in which the crowd moves, is developed. Rather than using the traditional static potential field, the successive multi-goals method uses a dynamic potential field which is vital to solve the reactive problem that is considered as a drawback of the model when simulating the human crowd behavior during evacuation of buildings whose structures are complex such as bottlenecks and narrow corridors. Numerical results that match the real behavior of human individuals in emergency situations prove the efficiency of the new method to solve the problem on an individual basis as well as its applicability.