期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RBF神经网络的引信智能天线多目标方向估计 被引量:1
1
作者 黄忠华 张旭东 韩芳 《探测与控制学报》 CSCD 北大核心 2003年第B03期4-6,共3页
提出了一种基于径向基函数 ( RBF)神经网络的引信智能天线多目标方向估计算法 ,对引信智能天线进行了结构和训练算法的设计。理论分析和测试结果表明 ,此算法充分利用了径向基函数神经网络的结构简单、自学习能力强、运算速度快、模式... 提出了一种基于径向基函数 ( RBF)神经网络的引信智能天线多目标方向估计算法 ,对引信智能天线进行了结构和训练算法的设计。理论分析和测试结果表明 ,此算法充分利用了径向基函数神经网络的结构简单、自学习能力强、运算速度快、模式分类能力强等特点 。 展开更多
关键词 RBF神经网络 引信智能天线 目标方向估计 径向基函数神经网络 目标检测层网络 方向估计网络
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
2
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部