期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ARJ解释方法及其目标求解算法的研究
1
作者 苑森淼 赵远峰 商立国 《计算机学报》 EI CSCD 北大核心 1993年第9期675-681,共7页
本文研究了规则相关性理论,给出了“递归时刻”、“完成时刻”定义及相关性定理,在此基础上提出了一种新的演绎方法——ARJ(AdvancedRelational Join)解释方法。它比RJ解释方法具有更大的优越性,从而有效地提高了逻辑程序设计系统效率。
关键词 程序设计 目标求解算法 ARJ
下载PDF
含混合式抽水蓄能电站的水光蓄日内互补运行研究
2
作者 冯晨 常高松 +3 位作者 陶湘明 马光文 黄炜斌 闫孟婷 《水电能源科学》 北大核心 2024年第8期173-177,共5页
在传统水电机组基础上加入可逆式机组构成混合式抽水蓄能电站增加水电调节能力,可与光伏电站联合运行,平抑新能源发电的不稳定性。为研究不同季节典型日下,含混合式抽水蓄能电站的水光蓄互补运行方式,构建以发电量最大和出力波动最小为... 在传统水电机组基础上加入可逆式机组构成混合式抽水蓄能电站增加水电调节能力,可与光伏电站联合运行,平抑新能源发电的不稳定性。为研究不同季节典型日下,含混合式抽水蓄能电站的水光蓄互补运行方式,构建以发电量最大和出力波动最小为目标的水光蓄互补运行短期调度模型,提出双层嵌套模型求解思路,考虑光伏出力的波动性,求解不同运行工况下含混合式抽水蓄能电站的水光蓄互补运行短期调度模型。计算结果表明,在不同来水及不同光伏出力过程的前提下,混合式抽水蓄能电站可采取不同运行工况以满足目标函数,不仅可以促进光伏并网消纳,还可增加水电发电量,减少弃水,为大量光伏资源并网下混合式抽水蓄能电站运行方式提供参考。 展开更多
关键词 混合式抽水蓄能电站 水光蓄互补 出力波动 目标求解算法 双层嵌套模型
下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
3
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部