Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
The visual background extractor(Vibe)algorithm can lead to a large area of false detection in the extracted foreground target when the illumination is mutated.An improved Vibe method based on the YCbCr color space and...The visual background extractor(Vibe)algorithm can lead to a large area of false detection in the extracted foreground target when the illumination is mutated.An improved Vibe method based on the YCbCr color space and improved three-frame difference is proposed in this paper.The algorithm detects the illumination mutation frames accurately based on the difference between the luminance components of two frames adjacent to a video frame.If there exists a foreground moving target in the previous frame of the mutated frame,three-frame difference method is utilized;otherwise,Vibe method using current frame is used to initialize background.Improved three-frame differential method based on the difference in brightness between two frames of the video changes the size of the threshold adaptively to reduce the interference of noise on the foreground extraction.Experiment results show that the improved Vibe algorithm can not only suppress the“ghost”phenomenon effectively but also improve the accuracy and completeness of target detection,as well as reduce error rate of detection when the illumination is mutated.展开更多
A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for...A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for target discrimination based on voting mechanism. Finally, Target groups are extracted. The results of experiments show the validity of this algorithm.展开更多
Tracking multiple maneuvering targets remains a challenge due to the existence of clutter and the disturbance of spurious targets. Traditional tracking algorithms treat target measurements as points which results in t...Tracking multiple maneuvering targets remains a challenge due to the existence of clutter and the disturbance of spurious targets. Traditional tracking algorithms treat target measurements as points which results in the loss of information. We have propose a Signature Driven multiple-target Tracking (SDT) method which uses target signature in spectral,spatial and temporary spaces as well as the Markov property of target motion,and the data association process in SDT is very effective. The experimental results have shown its outstanding performance.展开更多
In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rou...In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.展开更多
Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to ...Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.展开更多
This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocat...This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).展开更多
For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainab...For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金National Natural Science Foundation of China(No.61761027)。
文摘The visual background extractor(Vibe)algorithm can lead to a large area of false detection in the extracted foreground target when the illumination is mutated.An improved Vibe method based on the YCbCr color space and improved three-frame difference is proposed in this paper.The algorithm detects the illumination mutation frames accurately based on the difference between the luminance components of two frames adjacent to a video frame.If there exists a foreground moving target in the previous frame of the mutated frame,three-frame difference method is utilized;otherwise,Vibe method using current frame is used to initialize background.Improved three-frame differential method based on the difference in brightness between two frames of the video changes the size of the threshold adaptively to reduce the interference of noise on the foreground extraction.Experiment results show that the improved Vibe algorithm can not only suppress the“ghost”phenomenon effectively but also improve the accuracy and completeness of target detection,as well as reduce error rate of detection when the illumination is mutated.
文摘A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for target discrimination based on voting mechanism. Finally, Target groups are extracted. The results of experiments show the validity of this algorithm.
基金Supported by the National Natural Science Foundation of China (No. 60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No. 085102GN00)
文摘Tracking multiple maneuvering targets remains a challenge due to the existence of clutter and the disturbance of spurious targets. Traditional tracking algorithms treat target measurements as points which results in the loss of information. We have propose a Signature Driven multiple-target Tracking (SDT) method which uses target signature in spectral,spatial and temporary spaces as well as the Markov property of target motion,and the data association process in SDT is very effective. The experimental results have shown its outstanding performance.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA041403)the National Natural Science Foundation of China(No.60905061)the National Natural Science Foundation of Tianjin(No.08JCYBJC12700)
文摘In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.
基金the Knowledge Innovation Project of Chinese Academy of Sciences (NO.KZCX2-YW-Q06-1-3)the Ministry of Science and Technology of China for"973"project(NO.2010CB428404)
文摘Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.
基金supported by the National Natural Science Foundation of China(Grant No.11402295)the Science Project of National University of Defense Technology(Grant No.JC14-01-05)the Hunan Provincial Natural Science Foundation of China(Grant No.2015JJ3020)
文摘This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA11Z204)the Qianji-ang Program of Zhejiang Province (No. 2009R10008)
文摘For automated vehicles,comfortable driving will improve passengers’ satisfaction.Reducing fuel consumption brings economic profits for car owners,decreases the impact on the environment and increases energy sustainability.In addition to comfort and fuel-economy,automated vehicles also have the basic requirements of safety and car-following.For this purpose,an adaptive cruise control (ACC) algorithm with multi-objectives is proposed based on a model predictive control (MPC) framework.In the proposed ACC algorithm,safety is guaranteed by constraining the inter-distance within a safe range; the requirements of comfort and car-following are considered to be the performance criteria and some optimal reference trajectories are introduced to increase fuel-economy.The performances of the proposed ACC algorithm are simulated and analyzed in five representative traffic scenarios and multiple experiments.The results show that not only are safety and car-following objectives satisfied,but also driving comfort and fuel-economy are improved significantly.