期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
机器视觉及其应用(系列讲座) 第三讲 图像处理与分析——机器视觉的核心 被引量:11
1
作者 朱虹 《应用光学》 CAS CSCD 2007年第1期I0005-I0008,共4页
图像处理与分析是机器视觉中的核心部分,图像处理的目的可以抽象为提取目标物的特征增强;在完成对目标物增强的同时,抑制非目标物。一般采用扩大目标物与背景特征差异的方法来实现。图像增强方法的有效性,可以从目标与非目标两个模式... 图像处理与分析是机器视觉中的核心部分,图像处理的目的可以抽象为提取目标物的特征增强;在完成对目标物增强的同时,抑制非目标物。一般采用扩大目标物与背景特征差异的方法来实现。图像增强方法的有效性,可以从目标与非目标两个模式聚类特征是否明确可分来评价。图像分析的目的可以抽象为目标物的识别与提取。因为目标物的视觉特征,往往很难采用单一的数字模型准确描述,所以通常采用的方法是,采用多种描述来实现对目标逐步准确的识别。重点结合几个实例,讨论了图像处理与分析的方法。 展开更多
关键词 机器视觉 图像处理与分析 目标提取 特征增强
下载PDF
农产品检测中的图像分割算法
2
作者 郑志超 《数字通信世界》 2020年第5期278-278,共1页
随着机器视觉的发展,图像分割的算法已经逐步由传统算法逐步转化为基于深度学习的图像分割算法。准确快速的图像分割算法是对目标物提取的基础,只有准确的分割图像,才能以此为基础准确的测量目标物的长宽面积等基本参数,对比经典的图像... 随着机器视觉的发展,图像分割的算法已经逐步由传统算法逐步转化为基于深度学习的图像分割算法。准确快速的图像分割算法是对目标物提取的基础,只有准确的分割图像,才能以此为基础准确的测量目标物的长宽面积等基本参数,对比经典的图像分割算法与深度学习对比,阐述各自优缺点。 展开更多
关键词 图像分割 机器视觉 目标物提取
下载PDF
Automatic cell object extraction of red tide algae in microscopic images
3
作者 于堃 姬光荣 郑海永 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期275-293,共19页
Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite method... Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite methods for the automatic segmentation of cells of red tide algae from microscopic images.Depending on the existence of setae,we classify the common marine red tide algae into non-setae algae species and Chaetoceros,and design segmentation strategies for these two categories according to their morphological characteristics.In view of the varied forms and fuzzy edges of non-setae algae,we propose a new multi-scale detection algorithm for algal cell regions based on border-correlation,and further combine this with morphological operations and an improved GrabCut algorithm to segment single-cell and multicell objects.In this process,similarity detection is introduced to eliminate the pseudo cellular regions.For Chaetoceros,owing to the weak grayscale information of their setae and the low contrast between the setae and background,we propose a cell extraction method based on a gray surface orientation angle model.This method constructs a gray surface vector model,and executes the gray mapping of the orientation angles.The obtained gray values are then reconstructed and linearly stretched.Finally,appropriate morphological processing is conducted to preserve the orientation information and tiny features of the setae.Experimental results demonstrate that the proposed methods can effectively remove noise and accurately extract both categories of algae cell objects possessing a complete shape,regular contour,and clear edge.Compared with other advanced segmentation techniques,our methods are more robust when considering images with different appearances and achieve more satisfactory segmentation effects. 展开更多
关键词 non-setae algae CHAETOCEROS cell extraction border-correlation non-interactive GrabCut
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部