A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pit...A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.展开更多
The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive obj...The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.展开更多
A class of large-scale hierarchical control systems is considered, the overall objective function is a nonlinear and nonseparable function of multiple quadratic performance indices.The separation strategy of the multi...A class of large-scale hierarchical control systems is considered, the overall objective function is a nonlinear and nonseparable function of multiple quadratic performance indices.The separation strategy of the multiobjective optimization technique and the three-level objective coordination method are applied to the large -sacle systems, and a four-level hierarchical algorithms of optimization control is obtained.展开更多
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimiz...A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.展开更多
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr...A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.展开更多
Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NS...Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.展开更多
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r...Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.展开更多
The paper systemizes standard methods of planning, monitoring and controlling the realization of construction works in civil engineering projects and overviews the implementation of the methods in Team Co Cakovec from...The paper systemizes standard methods of planning, monitoring and controlling the realization of construction works in civil engineering projects and overviews the implementation of the methods in Team Co Cakovec from Croatia. The specificities of the methods are shown through the different construction works projects. Also, paper reviews the implementation, modification and improvement of existing methods for planning, monitoring and controlling the realization of projects in Team Co.展开更多
In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on t...In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on the multi-agent technology. Local operation models for departments of plan, marketing, sales, purchasing, as well as production and warehouse are formulated into individual agents, and their respective local objectives are collectively formulated into a multi-objective optimization problem. Considering the coupling effects among the correlated agents, the optimization process is carried out based on self-adaptive chaos immune optimization algorithm with mutative scale. The numerical results indicate that the proposed multi-agent optimization model truly reflects the actual situations of the air-condition production system. The proposed multi-agent based multidisciplinary design optimization method can help companies enhance their income ratio and profit by about 33% and 36%, respectively, and reduce the total cost by about 1.8%.展开更多
The optimiz at ion operation of gas pipeline network is investigated in this paper. Based on th e theories of system optimization and the multi object decision, a mathematical model about the multi object optimization...The optimiz at ion operation of gas pipeline network is investigated in this paper. Based on th e theories of system optimization and the multi object decision, a mathematical model about the multi object optimization operation of gas pipeline network is established, in line with the demand of urban gas pipeline network operation. A t the same time, an effective solution of the mathematical model is presented. A calculating software about optimization operation is compiled, coupling the actual operation of gas pipeline network. It can be applied to the operation of the gas pipeline network. The software was examined by real examples. The resul ts indicated that 2.13% energy consumption and 3.12% gas supply cost can be reduced through optimization operation.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
基金Supported by Program for New Century Excellent Talents in University (070003)the Natural Science Foundation of Anhui Province (070414154)~~
文摘A systematic and effective optimization is proposed for the design of a three-dimensional (3-D) vehicle suspension model with eight degrees of freedom (DOF), including vertical seat motion, vehicle suspension, pitching and rolling motions, and vertical wheel motions using the evolutionary game theory. A new design of the passive suspension is aided by game theory to attain the best compromise between ride quality and suspension deflections. Extensive simulations are performed on three type road surface models A, B, C pavement grades based on the guidelines provided by ISO-2631 with the Matlab/Simulink environment. The preliminary results show that, when the passive suspension is optimized via the proposed approach, a substantial improvement in the vertical ride quality is obtained while keeping the suspension deflections within their allowable clearance when the vehicle moves at a constant velocity v=20 m/s, and the comfort performance of a suspension seat can be enhanced by 20%-30%.
基金Supported by the National Natural Science Foundation of China (No.60421002)
文摘The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.
文摘A class of large-scale hierarchical control systems is considered, the overall objective function is a nonlinear and nonseparable function of multiple quadratic performance indices.The separation strategy of the multiobjective optimization technique and the three-level objective coordination method are applied to the large -sacle systems, and a four-level hierarchical algorithms of optimization control is obtained.
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)
文摘A systematic strategy for retrofit of the multi-period heat exchanger network (HEN) on the basis of the multi- objective optimization is developed. In this three-stage procedure, a simplified multi-objective optimization model of the multi-period lIEN is first established and then solved to target the retrofit, aiming to minimizing the total annual cost and total annual CO2 emissions. The obtained Pareto front represents series of retrofit targets under different emission limitations, from which the most desirable one can be selected. The matching of the existing and the required heat exchangers is further implemented to finalize the retrofit, which will meet the practical retrofit requirements and matching restrictions. The application of the proposed procedure is illustrated through a case study of a HEN in a vacuum gas oil hydro-treating unit.
基金Project(UKM-DLP-2011-059) supported by the National University of Malaysia
文摘A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.
文摘Optimization of antenna array pattern used in a spaceborne Synthetic Aperture Radar (SAR) system is considered in this study. A robust evolutionary algorithm, Non-dominated Sorting Genetic Algorithms (the improved NSGA-Ⅱ), is applied on a spaceborne SAR antenna pattern design. The system consists of two objective functions with two constraints. Pareto fronts are generated as a result of multi-objective optimization. After being validated by a test problem ZDT4, the algorithms are used to synthesize spaceborne SAR antenna radiation pattern. The good results with low Ambi- guity-to-Signal Ratio (ASR) and high directivity are obtained in the paper.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 61174047) and the Fundamental Research Funds for the Central Universities (HEUCF041406).
文摘Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
文摘The paper systemizes standard methods of planning, monitoring and controlling the realization of construction works in civil engineering projects and overviews the implementation of the methods in Team Co Cakovec from Croatia. The specificities of the methods are shown through the different construction works projects. Also, paper reviews the implementation, modification and improvement of existing methods for planning, monitoring and controlling the realization of projects in Team Co.
基金Project(60973132)supported by the National Natural Science Foundation of ChinaProject(2010B050400005)supported by the Science and Research Program of Guangdong Province,China
文摘In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on the multi-agent technology. Local operation models for departments of plan, marketing, sales, purchasing, as well as production and warehouse are formulated into individual agents, and their respective local objectives are collectively formulated into a multi-objective optimization problem. Considering the coupling effects among the correlated agents, the optimization process is carried out based on self-adaptive chaos immune optimization algorithm with mutative scale. The numerical results indicate that the proposed multi-agent optimization model truly reflects the actual situations of the air-condition production system. The proposed multi-agent based multidisciplinary design optimization method can help companies enhance their income ratio and profit by about 33% and 36%, respectively, and reduce the total cost by about 1.8%.
文摘The optimiz at ion operation of gas pipeline network is investigated in this paper. Based on th e theories of system optimization and the multi object decision, a mathematical model about the multi object optimization operation of gas pipeline network is established, in line with the demand of urban gas pipeline network operation. A t the same time, an effective solution of the mathematical model is presented. A calculating software about optimization operation is compiled, coupling the actual operation of gas pipeline network. It can be applied to the operation of the gas pipeline network. The software was examined by real examples. The resul ts indicated that 2.13% energy consumption and 3.12% gas supply cost can be reduced through optimization operation.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.