期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于实体信息和图神经网络的药物相互作用关系抽取
被引量:
2
1
作者
杨霞
韩春燕
琚生根
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期42-50,共9页
药物相互作用是指药物与药物之间相互促进或抑制.针对现有的药物关系抽取方法利用外部背景知识和自然语言处理工具导致错误传播和积累的问题,以及现有大多数研究在数据预处理阶段对药物实体进行盲化,忽略了有助于识别关系类别的目标药...
药物相互作用是指药物与药物之间相互促进或抑制.针对现有的药物关系抽取方法利用外部背景知识和自然语言处理工具导致错误传播和积累的问题,以及现有大多数研究在数据预处理阶段对药物实体进行盲化,忽略了有助于识别关系类别的目标药物实体信息的问题.论文提出了基于预训练生物医学语言模型和词汇图神经网络的药物相互作用关系抽取模型,该模型通过预训练语言模型获得句子的原始特征表示,在基于数据集构建的词汇图上进行卷积操作获得与句子相关的全局特征信息表示,最后与药物目标实体对特征进行拼接从而构建药物相互作用关系提取任务的特征表示,在获得丰富的全局特征信息的同时避免了使用自然语言处理工具和外部背景知识,提升模型的准确率.论文的模型在DDIExtraction 2013数据集上的F;值达到了83.25%,优于目前最新方法2.35%.
展开更多
关键词
药物
-
药物
相互作用关系抽取
预训练生物医学语言模型
目标药物实体对
图神经网络
下载PDF
职称材料
题名
基于实体信息和图神经网络的药物相互作用关系抽取
被引量:
2
1
作者
杨霞
韩春燕
琚生根
机构
四川大学计算机学院
四川民族学院理工学院
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期42-50,共9页
基金
国家自然科学基金(61972270)
四川省重点研发项目(2019YFG0521)。
文摘
药物相互作用是指药物与药物之间相互促进或抑制.针对现有的药物关系抽取方法利用外部背景知识和自然语言处理工具导致错误传播和积累的问题,以及现有大多数研究在数据预处理阶段对药物实体进行盲化,忽略了有助于识别关系类别的目标药物实体信息的问题.论文提出了基于预训练生物医学语言模型和词汇图神经网络的药物相互作用关系抽取模型,该模型通过预训练语言模型获得句子的原始特征表示,在基于数据集构建的词汇图上进行卷积操作获得与句子相关的全局特征信息表示,最后与药物目标实体对特征进行拼接从而构建药物相互作用关系提取任务的特征表示,在获得丰富的全局特征信息的同时避免了使用自然语言处理工具和外部背景知识,提升模型的准确率.论文的模型在DDIExtraction 2013数据集上的F;值达到了83.25%,优于目前最新方法2.35%.
关键词
药物
-
药物
相互作用关系抽取
预训练生物医学语言模型
目标药物实体对
图神经网络
Keywords
Drug-Drug interaction relationship
Pre-trained biomedical pretrained language model
Drug entity embedding
Graph neural network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于实体信息和图神经网络的药物相互作用关系抽取
杨霞
韩春燕
琚生根
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部