Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are a...Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.展开更多
A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource ...Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.展开更多
基金Supported by the State Key Laboratory Foundation under Grant No.9140C2304080607the Aviation Science Foundation under Grant No.05F53027
文摘Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
基金supported by National Natural Science Foundation of China (Grant No. 61501048) National High-tech R&D Program of China (863 Program) (Grant No. 2013AA102301)+1 种基金The Fundamental Research Funds for the Central Universities (Grant No. 2017RC12) China Postdoctoral Science Foundation funded project (Grant No.2016T90067, 2015M570060)
文摘Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.