In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake...In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.展开更多
Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards wer...Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards were used to trap insects in the field. The total number of insects species caught was 54, with 3,862 individuals recorded. Over half of the specimens caught were non-target insects, including phytophagous insects, particularly dipteran species(including many mosquitoes)(50.3%), followed by target pests(37.0%), and beneficial insects(12.7%). Statistical analysis revealed a significant difference in attraction to target pests, non-target pests, and beneficial insects among treatment groups. The results showed that higher numbers of target pests(Myzus persicae Sulzer, Empoasca flavescens Fabricius, Nysius ericaecshinly Schilling) were caught on yellow sticky card traps compared with blue, green, or red sticky card traps, indicating that yellow was the best trap color for target pests, with green and blue being progressively less attractive. For non-target insects, including phytophagous insects, flies, and mosquitoes,higher numbers of were caught on blue sticky card traps compared with yellow,green, or red sticky card traps. Our study indicated that blue was the most attractive color for flies, especially for the housefly, Musca domestica Linnaeus. Our study also showed that most beneficial insects exhibited preferences to particular trap color characteristics: yellow was the most attractive color for parasitic wasps and lady beetles; blue was the most attractive color for hoverflies and honeybees. In contrast,green and red had no significant attraction to beneficial insects.展开更多
A new local cost function is proposed in this paper based on the linear relationship assumption between the values of the color components and the intensity component in each local image window,then a new quadratic ob...A new local cost function is proposed in this paper based on the linear relationship assumption between the values of the color components and the intensity component in each local image window,then a new quadratic objective function is derived from it and the globally optimal chrominance values can be computed by solving a sparse linear system of equations.Through the colorization experiments on various test images,it is confirmed that the colorized images obtained by our proposed method have more vivid colors and sharper boundaries than those obtained by the traditional method.The peak signal to noise ratio(PSNR) of the colorized images and the average estimation error of the chrominance values relative to the original images also show that our proposed method gives more precise estimation than the traditional method.展开更多
This paper presents a robust object tracking approach via a spatially constrained colour model. Local image patches of the object and spatial relation between these patches are informative and stable during object tra...This paper presents a robust object tracking approach via a spatially constrained colour model. Local image patches of the object and spatial relation between these patches are informative and stable during object tracking. So, we propose to partition an object into patches and develop a Spatially Constrained Colour Model (SCCM) by combining the colour distributions and spatial configuration of these patches. The likelihood of the candidate object is given by estimating the confidences of the pixels in the candidate object region. The appearance model is learnt from the first frame and the tracking is carried out by particle filter. The experimental results show that the proposed tracking approach can accurately track the object with scale changes, pose variance and partial occlusion.展开更多
A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2...A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.展开更多
A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sa...A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.展开更多
基金National Natural Science Foundation of China(No.61201412)
文摘In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.
基金Supported by the Misereor Foundation(grant ref:335-031-1028 Z)
文摘Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards were used to trap insects in the field. The total number of insects species caught was 54, with 3,862 individuals recorded. Over half of the specimens caught were non-target insects, including phytophagous insects, particularly dipteran species(including many mosquitoes)(50.3%), followed by target pests(37.0%), and beneficial insects(12.7%). Statistical analysis revealed a significant difference in attraction to target pests, non-target pests, and beneficial insects among treatment groups. The results showed that higher numbers of target pests(Myzus persicae Sulzer, Empoasca flavescens Fabricius, Nysius ericaecshinly Schilling) were caught on yellow sticky card traps compared with blue, green, or red sticky card traps, indicating that yellow was the best trap color for target pests, with green and blue being progressively less attractive. For non-target insects, including phytophagous insects, flies, and mosquitoes,higher numbers of were caught on blue sticky card traps compared with yellow,green, or red sticky card traps. Our study indicated that blue was the most attractive color for flies, especially for the housefly, Musca domestica Linnaeus. Our study also showed that most beneficial insects exhibited preferences to particular trap color characteristics: yellow was the most attractive color for parasitic wasps and lady beetles; blue was the most attractive color for hoverflies and honeybees. In contrast,green and red had no significant attraction to beneficial insects.
基金Supported by the National Natural Science Foundation of China(No.61073089)the Joint Funds of the National Natural Science,Foundation of China(No.U1304616)the Qinhuangdao Research&Development Program of Science&Technology(No.2012021A044)
文摘A new local cost function is proposed in this paper based on the linear relationship assumption between the values of the color components and the intensity component in each local image window,then a new quadratic objective function is derived from it and the globally optimal chrominance values can be computed by solving a sparse linear system of equations.Through the colorization experiments on various test images,it is confirmed that the colorized images obtained by our proposed method have more vivid colors and sharper boundaries than those obtained by the traditional method.The peak signal to noise ratio(PSNR) of the colorized images and the average estimation error of the chrominance values relative to the original images also show that our proposed method gives more precise estimation than the traditional method.
基金Supported by the National Natural Science Foundation of China (No. 60677040)
文摘This paper presents a robust object tracking approach via a spatially constrained colour model. Local image patches of the object and spatial relation between these patches are informative and stable during object tracking. So, we propose to partition an object into patches and develop a Spatially Constrained Colour Model (SCCM) by combining the colour distributions and spatial configuration of these patches. The likelihood of the candidate object is given by estimating the confidences of the pixels in the candidate object region. The appearance model is learnt from the first frame and the tracking is carried out by particle filter. The experimental results show that the proposed tracking approach can accurately track the object with scale changes, pose variance and partial occlusion.
文摘A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.
基金Supported by the National Natural Science Foundation of China(No.61133009,U1304616)
文摘A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.