Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout o...Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout or debonding phenomenon often occurs in osteonal and interstitial tissue bone. The study aims to construct a fiber-reinforced composite material debonding model for cortical bone, in which the bonding condition along the osteon, cement line and interstitial tissue bone are assumed to be imperfect. In the study, we used the complex variable method to obtain series representations for stress fields in the osteon, cement line and the interstitial tissue bone with a radial crack. The effects of material properties of osteon and cement line, crack position, and varying degrees of debonding on the fracture behavior were investigated by computing the stress intensity factor (SIF) in the vicinity of the microcrack tips. The investigation results indicated that the cement line was important for controlling the fracture toughening mechanisms and that the level of imperfect bonding among osteon, cement line and interstitial tissue bone had a pronounced effect on the crack behavior and should not be ignored.展开更多
文摘Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout or debonding phenomenon often occurs in osteonal and interstitial tissue bone. The study aims to construct a fiber-reinforced composite material debonding model for cortical bone, in which the bonding condition along the osteon, cement line and interstitial tissue bone are assumed to be imperfect. In the study, we used the complex variable method to obtain series representations for stress fields in the osteon, cement line and the interstitial tissue bone with a radial crack. The effects of material properties of osteon and cement line, crack position, and varying degrees of debonding on the fracture behavior were investigated by computing the stress intensity factor (SIF) in the vicinity of the microcrack tips. The investigation results indicated that the cement line was important for controlling the fracture toughening mechanisms and that the level of imperfect bonding among osteon, cement line and interstitial tissue bone had a pronounced effect on the crack behavior and should not be ignored.