超大型油船(very large crude carrier,VLCC)目的港预测对海运原油流向预测以及货源地未来运力估计具有重要作用。针对VLCC的AIS目的港信息存在缺失、更新不及时、不准确等现象,提出一种基于隐马尔科夫模型的VLCC目的港预测方法。分析船...超大型油船(very large crude carrier,VLCC)目的港预测对海运原油流向预测以及货源地未来运力估计具有重要作用。针对VLCC的AIS目的港信息存在缺失、更新不及时、不准确等现象,提出一种基于隐马尔科夫模型的VLCC目的港预测方法。分析船舶AIS轨迹数据,得到油船历史停靠港口序列;根据VLCC轨迹提取习惯航路,以航路中的交叉点为依据设置观测线;利用船舶航行轨迹数据判断船舶是否经过观测线以及经过观测线的方向,对不同方向分别计算船舶在挂靠港间的转移概率矩阵和船舶挂靠港与观测线间的输出概率矩阵,建立VLCC目的港预测模型并进行预测。研究结果表明:在大多数情况下VLCC目的港预测的准确率可以达到70%以上;航线越固定、运行越规律的船舶,预测准确率越高;船舶越靠近目的港,预测越准确;重载状态下的船舶目的港预测更准确。展开更多
Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based ...Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based on driving trajectory of vehicles to predict the destinations,which is challenging to achieve the early destination prediction.To this end,we propose a model of early destination prediction,DP-BPR,to predict the destinations by users’travel time and locations.There are three challenges to accomplish the model:1)the extremely sparse historical data make it challenge to predict destinations directly from raw historical data;2)the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction;3)how to learn destination preferences from historical data.To deal with these challenges,we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks.We learn the embeddings not only for users but also for locations and time under the supervision of historical data,and then use Bayesian personalized ranking(BPR)to learn to rank destinations.Experimental results on the Zebra dataset show the effectiveness of DP-BPR.展开更多
文摘超大型油船(very large crude carrier,VLCC)目的港预测对海运原油流向预测以及货源地未来运力估计具有重要作用。针对VLCC的AIS目的港信息存在缺失、更新不及时、不准确等现象,提出一种基于隐马尔科夫模型的VLCC目的港预测方法。分析船舶AIS轨迹数据,得到油船历史停靠港口序列;根据VLCC轨迹提取习惯航路,以航路中的交叉点为依据设置观测线;利用船舶航行轨迹数据判断船舶是否经过观测线以及经过观测线的方向,对不同方向分别计算船舶在挂靠港间的转移概率矩阵和船舶挂靠港与观测线间的输出概率矩阵,建立VLCC目的港预测模型并进行预测。研究结果表明:在大多数情况下VLCC目的港预测的准确率可以达到70%以上;航线越固定、运行越规律的船舶,预测准确率越高;船舶越靠近目的港,预测越准确;重载状态下的船舶目的港预测更准确。
基金Project(2018YFF0214706)supported by the National Key Research and Development Program of ChinaProject(cstc2020jcyj-msxmX0690)supported by the Natural Science Foundation of Chongqing,China+1 种基金Project(2020CDJ-LHZZ-039)supported by the Fundamental Research Funds for the Central Universities of Chongqing,ChinaProject(cstc2019jscx-fxydX0012)supported by the Key Research Program of Chongqing Technology Innovation and Application Development,China。
文摘Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based on driving trajectory of vehicles to predict the destinations,which is challenging to achieve the early destination prediction.To this end,we propose a model of early destination prediction,DP-BPR,to predict the destinations by users’travel time and locations.There are three challenges to accomplish the model:1)the extremely sparse historical data make it challenge to predict destinations directly from raw historical data;2)the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction;3)how to learn destination preferences from historical data.To deal with these challenges,we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks.We learn the embeddings not only for users but also for locations and time under the supervision of historical data,and then use Bayesian personalized ranking(BPR)to learn to rank destinations.Experimental results on the Zebra dataset show the effectiveness of DP-BPR.