The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be s...The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.展开更多
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
基金Supported by National Natural Science Foundation of China (No. 50978156 and No. 50908183)
文摘The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.