Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical...Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.展开更多
A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cak...A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.展开更多
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41172283, 41372313)National Basic Research Program of China (2012CB026103)
文摘Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.
基金Projects(51978672,51878671)supported by the National Natural Science Foundation of ChinaProject(2017zzts159)supported by the Graduate Innovation Program of Central South University,China+1 种基金Project(HNTY2021K09)supported by the Open Research Project of the Hunan Tieyuan Civil Engineering Testing Co.Ltd.,China。
文摘A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.