The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for u...The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for underground water. In this model, a heater installed within the heat tank represented sources of waste heat as energy input for finding appropriate conditions of the 10 L pump model. The system operation had five stages: heating, pumping, vapor flow, cooling, and water suction. The overall water heads of 3, 4.5, 6 and 7.5 m were tested. At the same time, it was found that the pump with 50% air volume is sufficient for pumping water to a desired level. In the experiment, the temperatures in the heating and pumping stages were 100-103 ℃and 80-90 ℃, respectively. The pressure in the pumping stage was 12-18 kPa, and the pressure in the suction stage was about-80 kPa, sufficient for the best performance. It could pump 170 L of water at a 2 m suction head, 120 L at a 3.5 m suction head, 100 L at a 5 m suction head, and 65 L at a 6.5 m suction head in 2 h. A mathematical model for larger pumps was also presented, which operates nearly the same as the present system. Economic analysis of the 10 L pump was also included.展开更多
Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand...Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ~ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.展开更多
基金the financial support provided by National Research Council of Thailand and the Energy Technology Division, School of Energy Environment and Materials, King Mongkut’s University of Technology Thonburisupported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission
文摘The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for underground water. In this model, a heater installed within the heat tank represented sources of waste heat as energy input for finding appropriate conditions of the 10 L pump model. The system operation had five stages: heating, pumping, vapor flow, cooling, and water suction. The overall water heads of 3, 4.5, 6 and 7.5 m were tested. At the same time, it was found that the pump with 50% air volume is sufficient for pumping water to a desired level. In the experiment, the temperatures in the heating and pumping stages were 100-103 ℃and 80-90 ℃, respectively. The pressure in the pumping stage was 12-18 kPa, and the pressure in the suction stage was about-80 kPa, sufficient for the best performance. It could pump 170 L of water at a 2 m suction head, 120 L at a 3.5 m suction head, 100 L at a 5 m suction head, and 65 L at a 6.5 m suction head in 2 h. A mathematical model for larger pumps was also presented, which operates nearly the same as the present system. Economic analysis of the 10 L pump was also included.
文摘Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ~ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.