The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution ...The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.展开更多
A novel and environmentally friendly route to directly prepare metallic vanadium from NaV03 by molten salt electrolysis is proposed. The feasibility about the direct electro-reduction of NaV03 to metallic vanadi- um i...A novel and environmentally friendly route to directly prepare metallic vanadium from NaV03 by molten salt electrolysis is proposed. The feasibility about the direct electro-reduction of NaV03 to metallic vanadi- um is analyzed based on the thermodynamic calculations and experimental verifications. The theoretical decomposition voltage of NaV03 to metallic vanadium is only 0.47 V at 800 ℃ and much lower than that of the alkali and alkali earth metal chloride salts. The value is slightly higher than that of low-valence vanadium oxides such as V203, V305 and VO. However, the low-valence vanadium oxides can he further electro-reduced to metallic vanadium thermodynamically. The thermodynamic analysis is verified by the experimental results. The direct preparation of metallic vanadium from NaV03 by molten salt electrolysis is feasible.展开更多
This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced...This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced with two polytropic processes in order to more accurately reflect the practical working performance. The heat transfer loss is taken into account. The expressions of power output, thermal efficiency, entropy generation rate(EGR) and ecological function are addressed using finite-time thermodynamic theory. Through numerical calculations, the influences of compression ratio, cut-off ratio and polytropic exponent on the performance are thermodynamically analyzed. The model can be simplified to other cycle models under specific conditions, which means the results have an certain universality and may be helpful in the design of practical heat engines. It is shown that the entropy generation minimization does not always lead to the best system performance.展开更多
文摘The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.
基金Supported by the National Basic Research Program of China(2013CB632606)the National Natural Science Foundation of China(51474200)+1 种基金the Youth Innovation Promotion AssociationCAS(2015036)
文摘A novel and environmentally friendly route to directly prepare metallic vanadium from NaV03 by molten salt electrolysis is proposed. The feasibility about the direct electro-reduction of NaV03 to metallic vanadi- um is analyzed based on the thermodynamic calculations and experimental verifications. The theoretical decomposition voltage of NaV03 to metallic vanadium is only 0.47 V at 800 ℃ and much lower than that of the alkali and alkali earth metal chloride salts. The value is slightly higher than that of low-valence vanadium oxides such as V203, V305 and VO. However, the low-valence vanadium oxides can he further electro-reduced to metallic vanadium thermodynamically. The thermodynamic analysis is verified by the experimental results. The direct preparation of metallic vanadium from NaV03 by molten salt electrolysis is feasible.
基金supported by the National Natural Science Foundation of China(Grant No.51576207)
文摘This study reports a new model of an air standard Dual-Miller cycle(DMC) with two polytropic processes and heat transfer loss.The two reversible adiabatic processes which could not be realized in practice are replaced with two polytropic processes in order to more accurately reflect the practical working performance. The heat transfer loss is taken into account. The expressions of power output, thermal efficiency, entropy generation rate(EGR) and ecological function are addressed using finite-time thermodynamic theory. Through numerical calculations, the influences of compression ratio, cut-off ratio and polytropic exponent on the performance are thermodynamically analyzed. The model can be simplified to other cycle models under specific conditions, which means the results have an certain universality and may be helpful in the design of practical heat engines. It is shown that the entropy generation minimization does not always lead to the best system performance.