LRN (low-Reynolds number) modifications to the NR (Norris-Reynolds) k-equation turbulence model are proposed and evaluated. The k and e that render the hybrid time scale are determined using the k-transport equati...LRN (low-Reynolds number) modifications to the NR (Norris-Reynolds) k-equation turbulence model are proposed and evaluated. The k and e that render the hybrid time scale are determined using the k-transport equation together with the Bradshaw and other algebraic relations. The eddy-viscosity coefficient Cμ and the empirical damping function are constructed such as to preserve the anisotropic characteristics of turbulence for application to non-equilibrium turbulent flows. The MNR (modified NR) model is applied to calculate two well-documented flows, yielding predictions in good agreement with the DNS (direct numerical simulation) and experimental data. Comparisons demonstrate that the MNR model offers a significant improvement over the original NR model and competitiveness with the Spalart-Allmaras one-equation turbulence model. The performance evaluation dictates that unlike the original NR model, the MNR model can be employed as a single-equation model instead of associating it with the two-layer model of turbulence.展开更多
文摘LRN (low-Reynolds number) modifications to the NR (Norris-Reynolds) k-equation turbulence model are proposed and evaluated. The k and e that render the hybrid time scale are determined using the k-transport equation together with the Bradshaw and other algebraic relations. The eddy-viscosity coefficient Cμ and the empirical damping function are constructed such as to preserve the anisotropic characteristics of turbulence for application to non-equilibrium turbulent flows. The MNR (modified NR) model is applied to calculate two well-documented flows, yielding predictions in good agreement with the DNS (direct numerical simulation) and experimental data. Comparisons demonstrate that the MNR model offers a significant improvement over the original NR model and competitiveness with the Spalart-Allmaras one-equation turbulence model. The performance evaluation dictates that unlike the original NR model, the MNR model can be employed as a single-equation model instead of associating it with the two-layer model of turbulence.