Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
In this paper, we presented a novel method for the facile and efficient one-pot synthesis of 2-arylbenzoxazoles, which were directly synthesized from 2-aminophenol and aldehydes catalyzed by hydrogen tetrachloroaurate...In this paper, we presented a novel method for the facile and efficient one-pot synthesis of 2-arylbenzoxazoles, which were directly synthesized from 2-aminophenol and aldehydes catalyzed by hydrogen tetrachloroaurate (HAuCl4·4H2O) under an oxygen atmosphere with anhydrous tetrahydrofuran (THF) as solvent or in solvent-free condition. The results show that this method could bring excellent yields as high as 96%. THF was proven to be the best choice among several solvents screened and the reaction was tolerated with a variety of aromatic aldehydes possessing electron-donating or withdrawing groups. The advantages of the present method lie in catalytic process using economic and environmentally benign dioxygen as oxidant.展开更多
A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its genera...A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its generated noise.In the present simulation,the numerical techniques of absorbing buffer zones,artificial convection velocity and spatial filtering are used to achieve nonreflecting boundary conditions.The self-similarity is used to validate the present numerical simulations.The large-scale coherent structures are plotted together with the acoustic waves,which demonstrates the directivity of acoustic waves.The Lighthill's source and space-time correlations are further investigated.The main contributions to mixing noise are identified in terms of large-scale coherent structures,Lighthill's source and space-time correlations.展开更多
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. Y407168)the Opening Foundation of Zhejiang Provincial Top Key Discipline, China
文摘In this paper, we presented a novel method for the facile and efficient one-pot synthesis of 2-arylbenzoxazoles, which were directly synthesized from 2-aminophenol and aldehydes catalyzed by hydrogen tetrachloroaurate (HAuCl4·4H2O) under an oxygen atmosphere with anhydrous tetrahydrofuran (THF) as solvent or in solvent-free condition. The results show that this method could bring excellent yields as high as 96%. THF was proven to be the best choice among several solvents screened and the reaction was tolerated with a variety of aromatic aldehydes possessing electron-donating or withdrawing groups. The advantages of the present method lie in catalytic process using economic and environmentally benign dioxygen as oxidant.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11232011 and 11021262)the National Basic Research Program of China (Grant No. 2013CB834100)(Nonlinear science)
文摘A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its generated noise.In the present simulation,the numerical techniques of absorbing buffer zones,artificial convection velocity and spatial filtering are used to achieve nonreflecting boundary conditions.The self-similarity is used to validate the present numerical simulations.The large-scale coherent structures are plotted together with the acoustic waves,which demonstrates the directivity of acoustic waves.The Lighthill's source and space-time correlations are further investigated.The main contributions to mixing noise are identified in terms of large-scale coherent structures,Lighthill's source and space-time correlations.